FICHAS DE LAS ASIGNATURAS

VARIEDADES SEMI-RIEMANNIANAS

1.- Datos de la Asignatura

Código	305330	Plan	n 2016 ECTS		4.5		
Carácter	Optativo	Curso	1°	Periodicidad	1.er semestre		
Área	Geometría y Topología						
Departamento	Matemáticas						
Plataforma	Plataforma:	StudiumPlus de la USAL					
Virtual	URL de Acceso:	https://moodle2.usal.es					

Datos del profesorado

Profesor Coordinador	Antonio López Almorox Grupo / s		todos	
Departamento	Matemáticas			
Área	Geometría y Topología			
Centro	Facultad de Ciencias			

Despacho	M3317(Edificio de la Merced)				
Horario de tutorías	Lunes y martes de 16:00 a 17:00 horas Miércoles, jueves y viernes de 13:00 a 14:00 horas				
URL Web	https://moodle2.usal.es/				
E-mail	alm@usal.es	Teléfono	923294500, ext. 1562		

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Esta asignatura pertenece al módulo común del plan de estudios del Máster.

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Como asignatura del módulo de formación común, los estudiantes del master pueden completar su formación con el aprendizaje de materias y métodos matemáticos propios de geometría diferencial, muy utilizados en diferentes campos de la Física y la Matemática, como son las Variedades Semi-riemannianas.

Perfil profesional.

Investigador

3.- Recomendaciones previas

Requisitos previos a nivel de un grado en Física o un grado en Matemáticas. El estudiante debe tener nociones básicas de álgebra lineal, cálculo diferencial en varias variables y ecuaciones diferenciales. Aunque no serán estrictamente necesarios, poseer unos conocimientos básicos de geometría diferencial y/o de geometría riemanniana ayudarán a una más rápida asimilación de la materia.

4.- Objetivos de la asignatura

El objetivo general de la asignatura es que el estudiante comprenda los aspectos geométricos fundamentales de las variedades semi-riemannianas de modo que le proporcionen una formación técnica especializada en este campo. Debido al carácter formativo común y multidisciplinar de esta asignatura, otro objetivo será desarrollar las ideas de manera que permitan a cada estudiante comprender mejor o profundizar en las otras asignaturas del máster independientemente de la línea de especialización elegida.

Para la consecución de estos objetivos habrá que tener muy en cuenta los conocimientos previos de geometría diferencial y/o de geometría riemanniana adquiridos por cada estudiante en el grado (Física o Matemáticas) que haya cursado. Por ello se proporcionará, al inicio del curso y para unificar los niveles de formación, una breve introducción de las ideas básicas de la teoría de variedades diferenciables y conexiones afines para, posteriormente, entrar en el objetivo específico de la materia que es formar al estudiante en las técnicas usuales de la Geometría Semi-Riemanniana. Por su importancia matemática se particularizá este estudio al caso de las variedades riemannianas y se mostrará cómo el uso de estas técnicas se emplea en el campo de la Relatividad (geometría Lorentziana) así como en otras teorías físicas y matemáticas.

5.- Contenidos

TEMA I: Aspectos básicos de Geometría diferencial. : Variedades diferenciables. Aplicaciones diferenciables. Espacios tangentes y cotangentes en un punto. Aplicación lineal tangente. Campos tensoriales diferenciables y algebra exterior diferenciable de Cartan. Leyes de derivación covariante. Traslado paralelo asociado a una conexión afín. Torsión y curvatura de una conexión lineal.

TEMA II: Geometría semi-riemanniana.: Formas bilineales simétricas y grupos semi-ortogonales. Variedades semi-riemannianas y riemannianas. Isometrías y campos Killing. Conexión de Levi-Civita. Traslado paralelo. Geodésicas. Aplicación exponencial. Curvatura seccional. Curvatura escalar y curvatura de Ricci. Espacios de curvatura constante. Isometrías de entornos normales. Campos de Jacobi. Espacios localmente simétricos.

TEMA III: Subvariedades semi-riemannianas: Subvariedades de una variedad semi-riemaninas. Inmersiones isométricas. Campos de vectores tangentes y normales con soporte en una subvariedad. Conexión inducida. Geodésicas en subvariedades. Hipersuperficies semi-riemannianas. La ecuación de Codazzi. La conexión normal.

TEMA IV: Geometría lorentziana Espacios vectoriales lorentzianos. Carácter causal de vectores y conos temporales. Variedades de Lorentz. Geometría local lorentzina. Aplicación al estudio de los espacio-tiempos de la Relatividad Especial y de la Relatividad General.

6.- Competencias a adquirir

Básicas/Generales.

Todas la competencias básicas y generales del master: CB6, CB7, CB8, CB9, CB10 y CG1.

Específicas.

Los estudiantes adquirirán las competencias específicas CE-1, CE-2, CE-3, CE-4, CE-5, CE-6 y CE7 del master. Además deberán:

Realizar cálculos tensoriales en variedades diferenciables.

Manejar los resultados básicos de la teoría de variedades semi-riemannianas.

Determinar explícitamente la conexión de Levi-Civita así como las ecuaciones de traslado paralelo y de las geodésicas asociadas a la misma.

Computar el tensor de curvatura de la conexión.

Aprender los resultados básicos de la geometría de subvariedades de una variedad semiriemanniana.

Transversales

Buscar información bibliográfica de forma autónoma.

Presentar ideas en público con claridad.

Redactar con precisión y rigor contenidos científicos.

7.- Metodologías docentes

Se expondrá un breve contenido teórico de los temas a través de clases presenciales, utilizando los libros de texto de referencia y el uso de medios informáticos, que servirán para fijar los conocimientos necesarios para desarrollar las competencias previstas. Las clases presenciales de problemas permitirán a los estudiantes profundizar en los conceptos desarrollados Por ello un buen aprendizaje de las técnicas en las clases prácticas presenciales establecidas será un objetivo esencial de la asignatura. Para alcanzar tal fin, los estudiantes dispondrán, vía la plataforma Studium Plus de la USAL o en fotocopias, de aquel material docente que se estime oportuno y en particular de los correspondientes enunciados de problemas con objeto de poder trabajar en ellos con antelación.

Con objeto de conseguir una mayor comprensión de los conceptos y destreza en las técnicas expuestas, se propondrán diferentes ejercicios (prácticos y/o teóricos) a los estudiantes para cuya realización contarán con el apoyo del profesor en seminarios tutelados. Estos seminarios se tratarán de en las que se fomentará la discusión y donde los estudiantes podrán compartir con sus compañeros las dudas que encuentren, estudiar diferentes alternativas para obtener solución a las mismas, compararlas y comenzar a desempeñar por si mismos las competencias de la asignatura. Durante el desarrollo de estos seminarios, el profesor responderá a las dudas que surjan y propondrán, para su consideración y debate entre los estudiantes, las diferentes propuestas que hayan aparecido en la resolución de los ejercicios propuestos. Se entregará con suficiente antelación todo el material necesario que será debatido en dichos seminarios, con objeto que los estudiantes lo hayan analizado previamente.

Cada estudiante deberá desarrollar ciertos trabajos relacionados con los temas de estudio. Dicho trabajo será de carácter individual y será evaluable según las directrices que se indican

más abajo. Previo a su entrega, cada estudiante tendrá la posibilidad de consultar y discutir sus observaciones sobre cómo enfocar la resolución de estos ejercicios con el profesor de prácticas en los horarios de tutoría. Se fomentará siempre el rigor científico durante el desarrollo del trabajo. Algunos de estos trabajos podrán ser expuestos por los estudiantes en clase ante sus compañeros.

Los estudiantes tendrán que desarrollar por su parte un trabajo personal de estudio y asimilación de la teoría y práctica de la asignatura con la resolución de otros problemas y con la preparación de sus trabajos, para alcanzar con éxito las competencias previstas.

Se establecerá un sistema der evaluación de adquisición de las competencias de la materia basados en el trabajo continuado del estudiante, controlado periódicamente con diversos instrumentos de evaluación tales como la realización y presentación de trabajos individuales y colectivos así como la exposición de un trabajo propuesto por el profesor.

Las tutorías se realizarán durante el periodo comprendido entre el inicio del curso y el final del master. En ellas se supervisará la realización del trabajo individual con objeto de introducir al estudiante, de forma dirigida, en los hábitos de integración de conocimiento a partir de diferentes fuentes de información.

Las vías de comunicación con el profesor serán tanto presenciales como a través de TIC.

8.- Previsión de distribución de las metodologías docentes

	Horas dirigidas por el profesor	Horas de trabajo personal	HORAS TOTALES
	Horas presenciales.	•	
Clases de teoría y problemas	30	30	60
Seminarios	8	22.5	32.5
Desarrollo y redacción de trabajos	5	15	20
Tutorías	2		
TOTAL	45	67.5	112.5

9.- Recursos

Libros de consulta para el alumno

- B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Appl. Math. 103, Academic Press, New York, 1983
- R.K. Sachs and H. Wu, General Relativity for Mathematicians, Graduate texts in Maths., 48, Springer-Verlag, New York, 1977.
- J.K. Beem, P.E. Ehrlich and K.L.Easley, Global Lorentzian Geometry, Second Edition, Pure and Appl. Math. 202, Marcel Dekker, New York, 1996
- K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Mathematics and Its Applications 364, Springer Science+Business Media Dordrecht, 1996.
- W.M. Boothby, An Introduction to differentiable manifolds and Riemannian Geometry, Pure Appl. Math. 120, Academic Press, New York, 1986.
- I. Chavel, Riemannian Geometry. A modern Introduction, Cambridge Tracts in Mathematics 108, Cambridge University Press, 1993.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Se utilizarán también los siguientes recursos:

Biblioteca "Abraham Zacut" de la Universidad de Salamanca.

Internet: En particular, base de datos MathSciNet, las revistas de acceso electrónico de la USAL y el archivo de preprints 'ArXiv.org''.

10.- Evaluación

Consideraciones Generales

La evaluación de la adquisición de las competencias de la materia se basará fundamentalmente en el trabajo continuado del estudiante, controlado periódicamente mediante los diferentes controles de seguimiento, los trabajos propuestos o la participación activa en las clases y seminarios del curso, así como con la exposición de los trabajos propuestos

Criterios de evaluación

La evaluación valorará los siguientes aspectos:

Realización de trabajos individuales y colectivos. Esta parte contabilizará con un 70% de la nota final.

Exposición de un trabajo propuesto por el profesor. Esta parte contabilizará con un 30% de la nota final.

Instrumentos de evaluación

Los trabajos realizados por los estudiantes y las exposiciones orales realizadas.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda seguir las actividades programadas en el desarrollo de la materia

Recomendaciones para la recuperación.

Se realizará un nuevo trabajo.

FÍSICA ESTADÍSTICA DEL NO-EQUILIBRIO

1.- Datos de la Asignatura

Código	305331	Plan	2016 ECTS		4,5		
Carácter	Optativa	Curso	1.°	Periodicidad	1.er semestre		
Área	Área Física Aplicac	a Aplicada y Área Estadística e Investigación Operativa					
Departamento	Departamento de Física Aplicada y Departamento de Estadística						
Plataforma	Plataforma:	Studium					
Virtual	URL de Acceso:	http://studium.usal.es					

Datos del profesorado

Profesor Coordinador	José Miguel Mateos Roco	Grupo / s	Todos	
Departamento	Física Aplicada			
Área	Física Aplicada			
Centro	Facultad de Ciencias			
Despacho	Decanato de la Facultad de Ciencias			

Horario de tutorías	Miércoles y jueves de 17 a 19 h				
URL Web					
E-mail	roco@usal.es	Teléfono	923 294 500 Ext.: 1504		

Profesor Coordinador	Francisco Javier Villaroel Rodríguez Grupo / s Todos				Todos
Departamento	Estadística				
Área	Estadística e Investigación Operativa				
Centro	Facultad de Ciencias				
Despacho	Edificio de Ciencias, 1115				
Horario de tutorías	Lunes y Miercoles 13-14				
URL Web					
E-mail	javier@usal.es	Teléfono	923	3 294 500 ex	d 6996

Profesor Coordinador	Juan Antonio White Sánchez Grupo		Todos	
Departamento	Física Aplicada			
Área	Física Aplicada			
Centro	Facultad de Geografía e Historia			

Despacho	Edificio Trilingüe. Planta 2ª. Desp. 16 (T3318)				
Horario de tutorías	Lunes de 17:00 a 21:00, Martes de 12:00 a 14:00				
URL Web					
E-mail	white@usal.es Teléfono 923 294 500 ext. 6336				

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

La asignatura pertenece al módulo "Común"

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Esta asignatura aborda el estudio de la Física de sistemas del no-equilibrio desde el punto de vista de la Mecánica Estadística y la Teoría de Procesos Estocásticos.

Perfil profesional.

Al ser una asignatura del módulo común, es relevante en todos los perfiles profesionales vinculados al Máster.

3.- Recomendaciones previas

Son recomendables unos conocimientos previos de Física Estadística a nivel de Grado.

4.- Objetivos de la asignatura

Se pretende con esta asignatura que los estudiantes completen su formación sobre Física Estadística. Más específicamente, los resultados de aprendizaje que se esperan son los siguientes:

Conocer los principios físicos necesarios para la descripción de los sistemas del no-equilibrio y saber aplicarlos a casos concretos.

Conocer y saber manejar las herramientas necesarias para dicha descripción.

5.- Contenidos

Ecuación de Liouville y jerarquía Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY).

Teoría cinética y ecuación de Boltzmann.

Funciones de correlación temporal.

Teoría de respuesta lineal.

Hidrodinámica y ecuaciones de transporte

Movimiento browniano, ecuación de Langevin y ecuaciones de Fokker-Planck (para procesos de difusión). Función de correlación.

Ecuaciones diferenciales estocásticas. Proceso de Ornstein-Uhlenbeck (ruido coloreado).

Dinámica de poblaciones.

Simulación de ecuaciones estocásticas.

6.- Competencias a adquirir

Específicas.

CE1, CE2, CE3, CE4 y CE5

Básicas/Generales.

CB6, CB7, CB9, CB10, CG1 y CG2

Clases magistrales: exposición, por parte del profesorado, de los aspectos teóricos de la asignatura.

Clases prácticas de problemas: resolución de problemas encaminados a aumentar la comprensión de la asignatura y a desarrollar sus aspectos prácticos.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo autónomo	HORAS TOTALES
		Horas	Horas no		
		presenciales.	presenciales.		
Sesiones mag	gistrales	20		50	70
	- En aula				
Prácticas	- En el laboratorio				
Practicas	- En aula de informática				
	- De campo				
	- De visualización (visu)				
Seminarios		10		21,75	31,75
Exposiciones	y debates				
Tutorías					
Actividades of	de seguimiento online				
Preparación	de trabajos				
Otras activid	ades (detallar)				
Exámenes		3,75		7	10,75
	TOTAL	33,75		78,75	112,5

9.- Recursos

Libros de consulta para el alumno

- J.-P. Hansen y I.R. McDonald, *Theory of Simple Liquids*. 2nd Ed. Academic Press, Londres (1986).
- K. Huang, Statistical Mechanics. 2nd Ed. Wiley, New York (1987).
- L.E. Reichl, A modern course in Statistical Mechanics. 2nd Ed. Wiley, New York (1997).

McQuarrie, D. A. (2000), Statistical Mechanics. University Science Books

Chandler, D. (1987), Introduction to Modern Statistical Mechanics. Oxford University Press

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Material suministrado a través de Studium.

10 - Evaluación

Consideraciones Generales

La evaluación de la asignatura contempla tanto el trabajo diario del estudiante, verificado mediante una evaluación continua, como el aprovechamiento global de la asignatura, que será analizado mediante una prueba final.

Criterios de evaluación

Para superar la asignatura el estudiante debe obtener una nota mínima de 5 sobre 10. Los pesos relativos de cada uno de los elementos de evaluación son los siguientes:

Instrumento	Peso mín.	Peso máx.
Participación en actividades presenciales	15	20
Presentación de trabajos	30	50
Prueba final	35	50

Instrumentos de evaluación

Participación en actividades presenciales: No se valorará la mera asistencia a las clases, sino que se requerirá la participación activa en ellas.

Presentación de trabajos: Los estudiantes realizarán uno o más trabajos que serán expuestos ante todo el grupo durante el curso.

Prueba final: Se realizará en las fechas propuestas en la planificación docente y tendrá una duración de unas tres horas.

Recomendaciones para la evaluación.

Se recomienda la asistencia y participación activa en las clases. También se recomienda llevar la asignatura al día y utilizar las tutorías siempre que sea necesario.

Recomendaciones para la recuperación.

Sólo es recuperable la parte de la calificación correspondiente al examen final, manteniéndose la nota de la evaluación continua (participación y trabajos).

HERRAMIENTAS DE ANÁLISIS ESTADÍSTICO Y CÁLCULO NUMÉRICO

1.- Datos de la Asignatura

Código	305332	Plan	2015	ECTS	4,5	
Carácter	ОВ	Curso	1°	Periodicidad	1.er semestre	
Área	Estadística e Inves	stigación Operativa/Matemática aplicada				
Departamento	Estadística/Matem	ística/Matemática aplicada				
Plataforma	Plataforma:	studium				
Virtual	URL de Acceso:	http://studium.usal.es				

Datos del profesorado

Profesor Coordinador	Javier Villarroel Rodríguez Grupo / s			
Departamento	Estadística			
Área	Estadística e Investigación Operativa			
Centro	Facultad de Ciencias			
Despacho	Edificio de Ciencias, Planta 0. Despacho 1511			
Horario de tutorías				

URL Web			
E-mail	Javier@usal.es	Teléfono	923294500, ext. 6996

Profesor	Juan Manuel Rodriguez Díaz Grupo / s				
Departamento	Estadística				
Área	Estadística e Investigación Operativa				
Centro	Facultad de Ciencias				
Despacho	Planta 0, despacho 1102				
Horario de tutorías					
URL Web					
E-mail	juanmrod@usal.es	Teléfono	923294500, ext.6992		

Profesor	María Jesús Rivas lopez Grupo / s			
Departamento	Estadística			
Área	Estadística e Investigación Operativa			
Centro	Facultad de Ciencias			

Despacho	Facultad de Ciencias, Planta 0. Despacho 1509				
Horario de tutorías					
URL Web					
E-mail	chusrl@usal.es	Teléfono	923294500, ext.6995		
Profesor	Luis Ferragut Canals		Grupo / s		

Profesor	Luis Ferragut Canals	Grupo / s			
Departamento	Matemática Aplicada				
Área	Matemática Aplicada				
Centro	Facultad de Ciencias				
Despacho	Facultad de Ciencias Casas del Parque, Planta 0, Despacho 5				
Horario de tutorías					
URL Web					
E-mail	ferragut@usal.es	Teléfono	923294500, ex	t.1522	

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

La asignatura pertenece al módulo "Común"

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Al ser una asignatura del módulo común, es relevante en todos los perfiles profesionales vinculados al Máster.

Perfil profesional.

Al ser una asignatura del módulo común, es relevante en todos los perfiles profesionales vinculados al Máster.

3 Recomendaciones previas	
---------------------------	--

4.- Objetivos de la asignatura

Se pretende con esta asignatura que los estudiantes completen su formación sobre métodos de la Probabilidad, Estadística y computación en Física. Más específicamente,

Conocer el manejo de distribuciones de probabilidad y sus aplicaciones a la Física cuántica y AstroFísica

Saber manejar e interpretar datos Estadísticos en Física

Conocer métodos de resolución numérica de problema en Física y de computación

Conocer y saber manejar las herramientas necesarias para dicha descripción

Específicas. CE1, CE2, CE3, CE4 y CE5

Básicas/Generales.

CB6, CB7, CB9, CB10, CG1 y CG2

Transversales.

Clases magistrales: exposición, por parte del profesorado, de los aspectos teóricos de la asignatura.

Clases prácticas de problemas: resolución de problemas, manejo de software estadístico y numérico.

		Horas dirigidas por el profesor		Horas de trabajo autónomo	HORAS TOTALES
		Horas	Horas no		
		presenciales.	presenciales.		
Sesiones magist	rales	20		50	70
Prácticas	En aula				
	En el laboratorio				
	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		10		21,75	31,75
Exposiciones y of	debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		3,75		7	10,75
	TOTAL	33,75		78,75	112,5

Libros de consulta para el alumno

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

10.- Evaluación

Consideraciones Generales

Criterios de evaluación					
Instrumento	Peso mín.	Peso máx.			
Participación en actividades presenciales	10	10			
Presentación de trabajos	0	90			
Prueba final	0	90			

Instrumentos de evaluación

Prueba final: Se realizará en las fechas propuestas en la planificación docente y tendrá una duración de unas tres horas.

Participación en actividades presenciales Se requerirá la participación activa en las clases. Dependiendo de la evolución de la asignatura se considerará opcionalmente la presentación de trabajos como sustituto complemento a la prueba final.

Recomendaciones para la evaluación.

Se recomienda la asistencia y participación activa en las clases. También se recomienda el uso de las tutorías siempre que sea necesario

Recomendaciones para la recuperación.

RESOLUCIÓN DE ECUACIONES DE LA FÍSICA

Código	305333	Plan	2013	ECTS	4,5
Carácter	Obligatorio	Curso	1°	Periodicidad	1.er semestre
Área	Física Teórica				
Departamento	Física Fundamental				
Plataforma	Plataforma:	Studium			
Virtual	URL de Acceso:				

Profesor Coordinador	Pilar García Estévez Grupo / s	
Departamento	Física Fundamental	
Área	Física Teórica	
Centro	Facultad de Ciencias	
Despacho	3344. Edificio Trilingue	
Horario de tutorías	Concertar cita por mail	

URL Web			
E-mail	pilar@usal.es	Teléfono	923294500, ext.6121

Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Módulo I: Formación común

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

adquirir un dominio en materias y técnicas de gran interés para a completar su formación como investigador

Perfil profesional.

3.- Recomendaciones previas

Es necesario tener conocimientos de ecuaciones diferenciales ordinarias al nivel del Grado en Física

4.- Objetivos de la asignatura

Saber aplicar los métodos de resolución de las ecuaciones en derivadas parciales relacionadas con problemas físicos

Problemas de difusión

Ecuación del calor: Problemas de contorno para ecuaciones de difusión - Transformadas integrales

Problemas hiperbólicos.

Ecuación de ondas en dos y tres dimensiones. Modos normales de oscilación. Resonancia -

Problemas elípticos

Ecuaciones de Poisson y Laplace: Problemas de contorno para ecuaciones elípticas -

Problemas variacionales

Ecuaciones no lineales

Básicas/Generales.

CB6, CB7, CB8, CB9, CB10

Específicas.

CE1, CE2, CE3, CE4, CE5 y CE6

Transversales.

7.- Metodologías docentes

La asignatura se impartirá a través de clases magistrales con apuntes subidos en la plataforma studium. Al principio de cada tema se subirán los apuntes correspondientes y una hoja de ejercicios para entregar al acabar el tema

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas Horas presenciales.	por el profesor Horas no presenciales.	Horas de trabajo autónomo	HORAS TOTALES
Sesiones mag	gistrales		-		
	En aula	30		55	85
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		5		10	15
Exposiciones	y debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		4		8,5	12,5
TOTAL					112,5

9. - Recursos

Libros de consulta para el alumno

Jordan D.W. and Smith P. *Nonlinear Ordinary Differential Equations* Clarendon Press. Oxford. (1989)

Tabor M. Chaos and integrability in nonlinear dynamics. Cambridge University Press. (1989)

Ince E. L. Ordinary Differential Equations. Dover. (1956)

Davis H. Nonlinear Differential and Integral Equations. Dover. (1992)

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Las que se vayan subiendo a studium

10.- Evaluación

Consideraciones Generales

Se valorara el aprendizaje continuo y la prueba final

Criterios de evaluación

Entrega de ejercicios 30%

Exposiciones orales 20%

Prueba final escrita 50%

Instrumentos de evaluación

Participación activa en las actividades presenciales

Realización y entrega de ejercicios

Exposición y defensa oral de problemas

Prueba final escrita

Recomendaciones para la evaluación.

Trabajar de forma continuada y acudir a tutoría

Recomendaciones para la recuperación.

CARACTERIZACIÓN DE MATERIALES Y DISPOSITIVOS

1.- Datos de la Asignatura

Código	305334	Plan	2013	ECTS	4,5
Carácter	Optativo	Curso	1°	Periodicidad	2° semestre
Área	Electrónica y Elec	ectromagnetismo			
Departamento	Física Aplicada				
Plataforma	Plataforma:	Studium			
Virtual	URL de Acceso:				

Datos del profesorado

Profesor Coordinador	Jesús Enrique Velázquez Pérez	Grupo / s	
Departamento	Física Aplicada		
Área	Electrónica		
Centro	Facultad de Ciencias		
Despacho	T2101 (Edificio Trilingüe)		
Horario de tutorías	Se especificará al inicio del curso		

URL Web			
E-mail	js@usal.es	Teléfono	923294500, ext.6331

Profesor Coordinador	Yahya Moubarak Meziani Grupo / s			
Departamento	Física Aplicada			
Área	Electrónica			
Centro	Facultad de Ciencias			
Despacho	T2101 (Edificio Trilingüe)			
Horario de tutorías	Se especificará al inicio del curso			
URL Web				
E-mail	meziani@usal.es	Teléfono	923294500, ext.6331	

Profesor Coordinador	Víctor Raposo Funcia Grupo / s			
Departamento	Física Aplicada			
Área	Electromagnetismo			
Centro	Facultad de Ciencias			
Despacho	T3310 (Edificio Trilingüe)			
Horario de tutorías	Se especificará al inicio del curso			

URL Web			
E-mail	victor@usal.es	Teléfono	923294500, ext.6326

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

La asignatura forma parte del Módulo II "Física Aplicada".

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

El objetivo global del Módulo es que el estudiante pueda adquirir un dominio en materias del campo de la Física Aplicada como son el estudio de los nuevos materiales, sus implicaciones tecnológicas y la conversión energética. La asignatura está orientada a proporcionar conocimientos dentro de varios campos de la medida y experimentación en materiales y dispositivos semiconductores.

Perfil profesional.

Materiales, Investigación, Energía, Telecomunicaciones, Electrónica, Física Nuclear, ...

3.- Recomendaciones previas

Para cursar esta asignatura es necesario tener conocimientos de las materias Electromagnetismo y Electrónica al nivel de las asignaturas correspondientes en el grado en Física

4.- Objetivos de la asignatura

Identificar los aspectos fundamentales en el proceso de diseño y preparación de experimentos avanzados.

Aprendizaje de lenguajes de programación para la automatización de experimentos.

Manejar diversos instrumentos y técnicas para medidas específicas de alta precisión: amplificadores lock-in, puente de impedancias, osciloscopio digital, analizador de redes, etc.

Llevar a cabo el control automatizado de experimentos mediante software

5 - Contenidos

Adquisición de datos y tratamiento de señal.

Automatización de procesos de medida.

Caracterización de dispositivos electrónicos.

Medidas de diversas propiedades eléctricas y magnéticas

6.- Competencias a adquirir

Específicas.

CE3: Capacidad para iniciarse en tareas de investigación interdisciplinar en Física y Matemáticas

CE4. Poseer conocimientos físicos y matemáticos avanzados que permitan cursar un Programa de Doctorado y realizar una tesis doctoral, desarrollando para ello la comprensión de los conceptos.

CE5. Capacidad para incorporarse a grupos de investigación e I+D+i en Física y Matemáticas a través de la interacción con los grupos de la Universidad de Salamanca especializados en dichos campos.

CE6. Capacidad para contribuir a las aplicaciones de la Física y las Matemáticas en empresas de innovación tecnológica.

CE7. Profundizar en un tema de investigación y conocer los avances más recientes en alguna de las actuales líneas de investigación en el ámbito de la Física y las Matemáticas.

Los estudiantes adquirirán conocimientos para plantear y realizar experimentos y medidas físicas de carácter avanzado

Básicas/Generales.

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

CB8. Los estudiantes serán capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus

conocimientos y juicios.

CB9. Los estudiantes sabrán comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

CG1. Los estudiantes se familiarizarán con los diversos aspectos involucrados en la investigación, tales como: trabajo teórico; consulta de bibliografía, revistas y bases de datos especializadas; redacción de trabajos de investigación; comunicación, exposición, debate y publicación de resultados.

٦	Γr	ัล	ns	s۷	e	rs	a	le	S.
		u		, ,	_		u	••	٠.

--

7.- Metodologías docentes

Clases magistrales. Se dedicarán a la exposición de los aspectos teóricos de la materia: tratamiento de señal, toma de datos, automatización de medida, ...

Prácticas de laboratorio. Se dedicarán a diseñar experimentos, detallar las condiciones del entorno en las que se realiza la medida y que pueden interferir con ésta y, finalmente, realizar la medida, analizar los resultados obtenidos y medir diversas magnitudes usando equipamiento profesional.

Informes. Los alumnos elaborarán informes tras completar sus sesiones de trabajo.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas	por el profesor	Horas de	HORAS
			Horas no	trabajo	TOTALES
		presenciales.	presenciales.	autónomo	TOTALLS
Sesiones mag	istrales	6		6	12
	En aula				
Prácticas	En el laboratorio	48		30	78
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios	•				
Exposiciones	y debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		2,25		20,25	22,5
	TOTAL	56,25		56,25	112,5

9.- Recursos

Libros de consulta para el alumno

- 1. Introduction to Electrodynamics (4th Edition), David J. Griffiths, Prentice Hall, 2005
- 2. Electronic measurement systems: theory and practice (4th Edition), A. F. P. Van Putten; Anton F. P. Van Putten, Institute of Physics Publishing, Bristol, 1996
- 3. Miguel A. Pérez García et al. Instrumentación electrónica, Thomson, D.L., Madrid, 2011
- 4. Amplitude Modulated Signals The Lock-in Amplifier". Handbook of Measuring System Design. Richard Burdett, AddisonWiley, 2005. ISBN 978-0-470-02143-9

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

- Impedance Measurement Handbook (A guide to measurement technology and techniques), 4th Edition, Agilent, http://cp.literature.agilent.com/litweb/pdf/5950-3000.pdf
- About Lok-in amplifiers. Application note from Stanford Research Systems: http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf
- Manual of DSP Lock-In Amplifier model SR830: http://www.ece.cmu.edu/~mems/resources/HH1212/SR830m.pdf

10 - Fyaluación

Consideraciones Generales

La evaluación estará basada en medir el grado de adquisición de las competencias propias de la asignatura, tanto de carácter teórico como práctico.

Criterios de evaluación

El principal criterio de evaluación será el rigor y aprovechamiento del trabajo en laboratorio que constituye la base de la asignatura.

Los instrumentos de evaluación sirven como guía para apreciar el avance en la adquisición de competencias por parte de los estudiantes.

Instrumentos de evaluación

Para la evaluación se utilizarán tres instrumentos:

- Ejecución de las prácticas de laboratorio (30%), en la que se valorará la calidad, corrección y rigor del trabajo realizado.
- Informes científicos elaborados a partir de las medidas realizadas y presentación de los mismos de forma oral con preguntas por parte de los profesores (50%).
- Resolución de problemas de diseño de circuitos de medida y de propiedades de materiales y discusión de los mismos (20%).

Recomendaciones para la evaluación.

- Estudio y seguimiento de la materia desde el primer día de actividad docente.
- Asistencia y actitud participativa en las clases magistrales.

- Asistencia y actitud participativa en la realización de las prácticas de laboratorio.
- Rigor en el análisis de medidas, resolución de problemas y en la elaboración de informes.
- Claridad y capacidad de síntesis en la presentación.

Recomendaciones para la recuperación.

De los instrumentos de evaluación se podrán recuperar los siguientes:

- Informes científicos elaborados a partir de las medidas realizadas y presentación de los mismos de forma oral con preguntas por parte de los profesores (50%).
- Resolución de problemas de diseño de circuitos de medida y de propiedades de materiales y discusión de los mismos (20%).

CONVERTIDORES ENERGÉTICOS EFICIENTES Y SOSTENIBLES

1.- Datos de la Asignatura

Código	305335	Plan	2015	ECTS	4,5	
Carácter	Optativa	Curso	1.°	Periodicidad	1.er semestre	
Área	Área Física Aplicac	Área Física Aplicada				
Departamento	Departamento de Física Aplicada					
Plataforma	Plataforma:	a: Studium				
Virtual	URL de Acceso:	http://studium.usal.es				

Datos del profesorado

Profesor Coordinador	Alejandro Medina Domínguez Grupo / s Todos			
Departamento	Física Aplicada			
Área	Física Aplicada			
Centro	Facultad de Ciencias			
Despacho	Edificio Trilingüe, 2.ª planta, despacho 17			

Horario de tutorías	L-V, 11-13 h			
URL Web				
E-mail	amd385@usal.es	Teléfono	677 565486	

Profesor Coordinador	Mª Jesús Santos Sánchez Grupo / s Todos			
Departamento	Física Aplicada			
Área	Física Aplicada			
Centro	Facultad de Ciencias			
Despacho	Edificio Trilingüe, 2.ª planta, despacho 15			
Horario de tutorías	L-V, 11-13 h			
URL Web				
E-mail	smjesus@usal.es	Teléfono	677 565481	

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

La asignatura es una optativa perteneciente al módulo de Física Aplicada.

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

La asignatura pretende familiarizar al estudiante con la modelización de algunos convertidores energéticos asociados a la generación de energía eléctrica y al transporte.

Perfil profesional.

Es una asignatura relevante dentro del perfil de Física Aplicada que ofrece el Máster.

3.- Recomendaciones previas

Son recomendables unos conocimientos previos de Termodinámica y cursar la asignatura junto a Fundamentos de Optimización Termodinámica.

4.- Objetivos de la asignatura

Comprender las bases termodinámicas del funcionamiento de los convertidores energéticos. Aplicar las leyes de la Termodinámica para determinar los regímenes de funcionamiento eficiente y sostenible de varios tipos de convertidores energéticos. Modelizar v simular diversos tipos de convertidores reales.

5 - Contenido

Motores de combustión interna Características generales y tipología Fundamentos de combustión Termoquímica de la combustión Combustibles y emisiones Modelización termodinámica Modelos de simulación numérica

Plantas de potencia de gas y vapor Plantas de potencia tipo Brayton Plantas Rankine y de ciclo combinado Modelización y optimización termodinámica

Plantas termosolares Tipos y características generales Modelización y optimización termodinámica

6.- Competencias a adquirir

Específicas.

CE1, CE2, CE3, CE4 y CE5

Básicas/Generales.

CB6, CB7, CB9, CB10, CG1 y CG2

7.- Metodologías docentes

Clases magistrales:

Exposición, por parte del profesorado, de los aspectos teóricos de la asignatura.

Clases prácticas de problemas:

Resolución de problemas encaminados a aumentar la comprensión de la asignatura y a desarrollar sus aspectos prácticos.

Utilización de software para análisis y modelización.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo autónomo	HORAS TOTALES
		Horas presenciales.	Horas no presenciales.		
Sesiones magistral	es	20		50	70
	- En aula				
Prácticas	- En el laboratorio				
Practicas	- En aula de informática				
	- De campo				
	- De visualización (visu)				
Seminarios	•	10		21,75	31,75
Exposiciones y deb	ates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		3,75		7	10,75
	TOTAL	33,75		78,75	112,50

9.- Recursos

Libros de consulta para el alumno

- J. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, 1988
- R. Stone, Introduction to Internal Combustion Engines, McMillan, 1999
- A. Medina y otros, Quasi-Dimensional Simulation of Spark Ignition Engines, Springer, 2014
- M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 2008
- J. Horlock, Advanced Gas Turbine Engines, Pergamon, 2003

J. Duffie and W. Beckman, Solar Engineering of Thermal Processes, Wiley, 2006

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Material suministrado a través de Studium.

10.- Evaluación

Consideraciones Generales

La evaluación de la asignatura contempla tanto el trabajo diario del estudiante, verificado mediante una evaluación continua, como el aprovechamiento global de la asignatura, que será analizado mediante una prueba final.

Criterios de evaluación

Para superar la asignatura el estudiante debe obtener una nota mínima de 5 sobre 10. Los pesos relativos de cada uno de los elementos de evaluación son los siguientes:

· · · · · · · · · · · · · · · · · · ·		
Instrumento	Peso mín.	Peso máx.
Participación en actividades presenciales	15	20
Presentación de trabajos	30	50
Prueba final	35	50

Instrumentos de evaluación

Participación en actividades presenciales: No se valorará la mera asistencia a las clases, sino que se requerirá la participación activa en ellas.

Presentación de trabajos: Los estudiantes realizarán uno o más trabajos que serán expuestos ante todo el grupo durante el curso.

Prueba final: Se realizará en las fechas propuestas en la planificación docente y tendrá una duración de unas tres horas.

Recomendaciones para la evaluación.

Se recomienda la asistencia y participación activa en las clases. También se recomienda llevar la asignatura al día y utilizar las tutorías siempre que sea necesario.

Recomendaciones para la recuperación.

Sólo es recuperable la parte de la calificación correspondiente al examen final, manteniéndose la nota de la evaluación continua (participación y trabajos).

ELECTROMAGNETISMO EN MATERIALES AVANZADOS Y APLICACIONES

1.- Datos de la Asignatura

Código	305336	Plan	2016	ECTS	4.5	
Carácter	Optativa	Curso	1.°	Periodicidad	1.er semestre	
Área	Electromagnetism	Electromagnetismo				
Departamento	Física Aplicada					
Plataforma	Plataforma: studium					
Virtual	URL de Acceso:	https://moodle2.usal.es/				

Datos del profesorado

Profesor Coordinador	Marcelino Zazo Rodríguez Grupo / s		
Departamento	Física Aplicada		
Área	Electromagnetismo		
Centro	Facultad de Ciencias		
Despacho	Despacho Edificio Trilingüe. Segunda planta. Despacho nº 6 T3307		
Horario de tutorías	de tutorías Concertar cita previa por correo electrónico		

URL Web			
E-mail	marcel@usal.es_	Teléfono	923 29 44 36 Ext. 6323

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Formación orientada hacia la tecnología electrónica dentro de la Física Aplicada

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Es una asignatura optativa necesaria para los estudiantes que decidan seguir por la orientación tecnológica.

Perfil profesional.

Perfil tecnológico

3.- Recomendaciones previas

ASIGNATURAS OPTATIVAS QUE SE RECOMIENDA CURSAR SIMULTANEAMENTE

- "Caracterización de materiales y dispositivos"
- "Física de Sensores"
- "Materiales para la nanotecnología"
- "Nanoelectrónica y aplicaciones de alta frecuencia"
- 4.- Objetivos de la asignatura

Clasificar los distintos tipos de respuesta de un material a campos eléctricos y magnéticos.

Justificar los distintos tipos de respuesta a partir de modelos microscópicos.

Identificar los materiales cuyas propiedades electromagnéticas los hacen útiles para aplicaciones tecnológicas.

Aplicar técnicas de medida y simulación para determinar las propiedades electromagnéticas de los materiales.

5.- Contenidos

Ecuaciones de Maxwell y medios materiales.

Respuesta dieléctrica: polarizabilidad y permitividad estática. Permitividad dinámica.

Materiales dieléctricos avanzados: ferroeléctricos y dieléctricos de alta permitividad.

Magnetismo ordenado: ferromagnetismo, antiferromagnetismo y ferrimagnetismo. Multiferroicos.

Anisotropía magnética y magnetostricción. Dominios magnéticos.

Ecuaciones del micromagnetismo.

6.- Competencias a adquirii

Específicas.

CE3, CE4, CE5, CE6, CE9

Básicas/Generales.

CB6, CB7, CB8, CB9, CB10

Transversales.

Los estudiantes adquirirán una visión global sobre los distintos tipos de comportamientos de

los materiales como respuesta a campos eléctricos y magnéticos, así como de los modelos microscópicos que explican dichos comportamientos

7.- Metodologías docentes

	DESCRIPCIÓN DE LAS METODOLOGÍAS
METODOLOGÍA	DESCRIPCIÓN
Clases de teoría	Mediante clases magistrales se desarrollarán los contenidos teóricos de la asignatura.
Sesiones prácticas	Se llevarán a cabo 4 sesiones prácticas de laboratorio y 1 sesión práctica en el aula de informática:
	Sesiones de laboratorio
	Medida de la susceptibilidad magnética
	Dependencia de las propiedades conductoras con la temperatura en materiales conductores, semiconductores y superconductores.
	Histéresis ferromagnética en ac y dc
	Sesión aula de informática:
	Simulación numérica: Micromagnetismo
Tutorías	Además de las tutorías presenciales en los horarios establecidos, los profesores estarán disponibles a través de e-mail para atender las dudas que se puedan resolver mediante este medio o concertar tutorías personalizadas.

8.- Previsión de distribución de las metodologías docentes

		prof	gidas por el esor	Horas de trabajo	HORAS
		Horas presenciales.	Horas no presenciales.	autónomo	TOTALES
Sesiones magist	rales	27		40	67
	En aula				
Prácticas	En el laboratorio	12		8	20
Practicas	En aula de informática	3		2	5
	De campo				
	De visualización (visu)				
Seminarios					
Exposiciones y o	lebates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		3		17.5	20.5
	TOTAL	45		67.5	112.5

9.- Recursos

Libros de consulta para el alumno

Albella, J.M. y Martínez, J.M.: "Física de Dieléctricos", Marcombo, Barcelona 1984.

Cullity, B.D.: "Introduction to Magnetic Materiales", Addison-Wesley, 2009.

Bertotti. G.: "Hysteresis in Magnetism", Academic Press, 1998.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

10.- Evaluación

Consideraciones Generales

La evaluación de las competencias de la materia se basará principalmente en una prueba escrita final junto con el trabajo continuado durante el curso controlado a través de la asistencia, trabajos entregados, prácticas y otras pruebas que se realicen.

Criterios de evaluación

Se valorará la adquisición de las competencias de carácter teórico y práctico. Se tendrán en cuenta tanto la prueba escrita final como las actividades de evaluación continua.

Instrumentos de evaluación

Se utilizarán los siguientes:

- · Ejercicios entregados y/o expuestos por los estudiantes: Se evaluará la entrega de ejercicios y trabajos propuestos por el profesor a lo largo del curso, así como la exposición y debate de los mismos en clase. Se evaluarán las prácticas realizadas en el laboratorio y en el aula de informática. Será un 50% de la nota total de la asignatura.
- · Prueba escrita final: Se evaluará la teoría (conocimiento de conceptos, enunciados y razonamientos expuestos en las clases de teoría) mediante la contestación de preguntas, Será un 50% de la nota final de la asignatura.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Se realizará una prueba escrita de recuperación que servirá para recuperar la parte de la nota correspondiente a la prueba escrita final.

FÍSICA DE SENSORES

1.- Datos de la Asignatura

Código	305337	Plan	2016	ECTS	4,5		
Carácter	Optativa	Curso	1.°	Periodicidad	2.° semestre		
Área	Física Aplicada / El	ectrónica /	Electromagne	etismo			
Departamento	Física Aplicada	Física Aplicada					
Plataforma	Plataforma:	moodle					
Virtual	URL de Acceso:	http://studium.usal.es					

Datos del profesorado

Profesor Coordinador	Jesús Enrique Velázquez Pérez Grupo / s				
Departamento	Física Aplicada				
Área	Electrónica				
Centro	Facultad de Ciencias. Edificio Trilingüe				
Despacho	T2106 (Edificio Trilingüe)				

Horario de tutorías	Se especificará al inicio del curso						
URL Web							
E-mail	js@usal.es Teléfono 923294500, ext.6331						
Profesor	María Susana Pérez Santo	os		Grupo / s			
Departamento	Física Aplicada						
Área	Electrónica						
Centro	Facultad de Ciencias. Edificio Trilingüe						
Despacho	T2106 (Edificio Trilingüe)						
Horario de tutorías	Lunes, martes y miércole	es de 16:00 a	a 18:	00 h			
URL Web							
E-mail	susana@usal.es	Teléfono	923	3294400 ext.	1304		
	ı	l					
Profesor	Luis López Díaz Grupo / s						
Departamento	Física Aplicada						
Área	Electromagnetismo						
Centro	Facultad de Ciencias. Edificio Trilingüe						
Despacho	T3308 (Edificio Trilingüe)						

Horario de tutorías	Se especificará al principio de curso					
URL Web	http://diarium.usal.es/lld/					
E-mail	<u>lld@usal.es</u>	Teléfono	923294500, ext. 6324			

Profesor	Santiago Velasco Maíllo Grupo / s					
Departamento	Física Aplicada					
Área	Física Aplicada					
Centro	Facultad de Ciencias. Edificio Trilingüe					
Despacho	T3318 (Edificio Trilingüe)					
Horario de tutorías	Se especificará al inicio o	del curso				
URL Web						
E-mail	santi@usal.es	Teléfono	923294500 ext. 6334			

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Esta asignatura pertenece al bloque formativo III (Física y tecnología de materiales y dispositivos avanzados).

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Asignatura de carácter aplicado en la que muestra cómo la respuesta controlada de ciertos materiales a un determinado estímulo físico puede utilizarse para construir sensores de muy diversa índole, los cuales están presentes en multitud de aplicaciones hoy en día.

Perfil profesional.

Materiales, energía, telecomunicaciones, instrumentación.

3.- Recomendaciones previas

Haber cursado o estar cursando paralelamente con ella las siguientes asignaturas del máster: Materiales para la nanotecnología, Instrumentación avanzada, Electromagnetismo en materiales avanzados, Nanotecnología y aplicaciones en alta frecuencia.

4.- Objetivos de la asignatura

Obtener una visión general de los tipos de sensores que existen, el principio físico en el que se basan y sus aplicaciones.

Conocer los parámetros que caracterizan el comportamiento de un sensor.

Caracterizar experimentalmente algunos de estos parámetros.

5. - Contenidos

Fundamentos y aspectos generales de los sensores Sensores mecánicos

Sensores térmicos

Sensores electromagnéticos

Sensores optoelectrónicos

Sensores químicos

6	or	m		33	n	6 1	36	ar	10	ш	Tal	T a
	C L	ш	540		ш							

Transversales.	

7.- Metodologías docentes

- -Clases magistrales. Se dedicarán a la exposición de los aspectos teóricos de la materia: fundamentos físicos, clasificación de los sensores en base a los mismos, parámetros característicos, aplicaciones, etc.
- -Prácticas de laboratorio. Se dedicarán a caracterizar el comportamiento de diversos sensores utilizando técnicas de medida básicas, así como al diseño y construcción de dispositivos sencillos para fines concretos que utilicen alguno de estos sensores.
- **-Exposiciones de trabajos.** Los alumnos expondrán sus trabajos, que podrán ser de carácter teórico o práctico.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas	por el profesor	Horas de	HORAS
		Horas	Horas no	trabajo	TOTALES
		presenciales.	presenciales.	autónomo	
Sesiones ma	gistrales	25		25	50
	• En aula				
Prácticas	En el laboratorio	15		25	40
Practicas	 En aula de informática 				
	De campo				
	 De visualización (visu) 				
Seminarios	·				
Exposiciones	s y debates	3		1	4
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos				10	10
Otras actividades (detallar)					
Exámenes		2		6,5	8,5
	TOTAL	45		67,5	112,5

9.- Recursos

Libros de consulta para el alumno

Handbook of Modern Sensors: Physics, Designs, and Applications. J. Fraden (Springer, New York, 2010).

The measurement, instrumentation, and sensors handbook. John G. Webster, editor in chief (CRC Press, Boca Raton, 1998).

Sensores y acondicionadores de señal. Ramón Pallás Areny (Marcombo, Barcelona, 2005).

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

10. - Fyaluación

Consideraciones Generales

La evaluación estará basada en medir el grado de adquisición de las competencias propias de la asignatura, tanto de carácter teórico como práctico.

Criterios de evaluación

La asignatura se divide en 3 bloques, que se evaluarán por separado a la finalización de cada uno de ellos. No habrá prueba final.

Para superar la asignatura se requiere:

- 40% de la calificación máxima en cada uno de los 3 bloques.
- 50% de la calificación máxima en la media de los 3 bloques.

Instrumentos de evaluación

La evaluación de cada uno de los bloques estará basada en algunos de los siguientes instrumentos:

- Realización de prácticas de laboratorio y elaboración de informes.
- Resolución y discusión de problemas y ejercicios.
- Elaboración y exposición de trabajos.

Recomendaciones para la evaluación.

- Estudio y seguimiento de la materia desde el primer día de actividad docente.
- Asistencia y actitud participativa en las clases magistrales.
- Realización de las prácticas de laboratorio.
- Realización de los ejercicios y tareas propuestos.

Recomendaciones para la recuperación.

Sólo será necesario recuperar aquellos bloques en los que no se haya superado la calificación mínima. Los instrumentos de evaluación serán los mismos que en la primera convocatoria, pero las tareas propuestas (problemas, trabajos, etc.) podrán ser distintos.

FUNDAMENTOS DE OPTIMIZACIÓN TERMODINÁMICA

Código	305338	Plan	2016	ECTS	4,5		
Carácter	Optativa	Curso	1.°	Periodicidad	1.er semestre		
Área	Área Física Aplica	ada					
Departamento	Departamento de	Departamento de Física Aplicada					
Plataforma	Plataforma:	Studium					
Virtual	URL de Acceso:	http://studium.usal.es					

Profesor Coordinador	Antonio Calvo Hernández Grupo / s Todos				
Departamento	Física Aplicada				
Área	Física Aplicada				
Centro	Facultad de Ciencias				
Despacho	Edificio Trilingüe, 2.ª planta, despacho 11				
Horario de tutorías	A convenir				

URL Web	http://studium.usal.es					
E-mail	anca@usal.es	Teléfono	923 294 500 ext. 1311			

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

La asignatura pertenece al módulo de Física Aplicada

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Esta asignatura aborda el estudio de los fundamentos de la termodinámica de tiempo finito y de los procesos irreversibles para el análisis y optimización de convertidores termosolares, termoeléctricos y bioquímicos.

Perfil profesional.

Es una asignatura relevante dentro del perfil de Física Aplicada que ofrece el Máster.

3.- Recomendaciones previas

Son recomendables conocimientos previos de Termodinámica a nivel de grado y cursar la asignatura Convertidores energéticos eficientes y sostenibles

4.- Objetivos de la asignatura

Comprender los elementos básicos de la optimización termodinámica a partir del formalismo termodinámico. Ser capaz de plantear y aplicar a sistemas concretos diversas funciones objetivo y procedimientos de optimización, con las correspondientes ligaduras.

5. - Contenidos

Conocer los principios de la Termodinámica de tiempos finitos

Conocer los principios de la Termodinámica de los procesos irreversibles

Caracterización de flujos y fuerzas termodinámicas

Funciones objetivos: planteamiento y ligaduras.

Aplicación a sistemas isotermos y no isotermos: conversión termo-solar, termoeléctrica y bioquímica.

6.- Competencias a adquirir

Específicas.

CE1, CE2, CE4, CE5, CE6

Básicas/Generales.

CB6, CB7, CB8, CB9, CB10, CG1

7.- Metodologías docentes

Clases magistrales: exposición, por parte del profesor, de los aspectos teóricos de la asignatura. Clases prácticas de problemas: resolución de problemas encaminados a aumentar la comprensión de la asignatura y a desarrollar sus aspectos prácticos.

Utilización de software para análisis y modelización.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo autónomo	HORAS TOTALES
		Horas presenciales.	Horas no presenciales.		
Sesiones magis	trales	20		50	70
Prácticas	- En aula				
	- En el laboratorio				
	- En aula de informática				
	- De campo				
	 De visualización (visu) 				
Seminarios		11		21,75	31,75
Exposiciones y of	debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					•
Otras actividades (detallar)					•
Exámenes		3		7	10
	TOTAL	34		78,75	112,75

9.- Recursos

Libros de consulta general para el alumno

- G. Lebon, D. Jou, and J. Casas Vázquez; *Understanding Non-equilibrium Thermodynamics*. Springer, Berlin (2008)
- S. R. Caplan and A. Essig, *Bioenergetics and linear nonequilibrium thermodynamics*, *Harvard University Press*, Cambridge (1983).
- A. Bejan, Entropy generation and minimization; CRC Press, Boca Raton (1996)

- A. Bejan, Advance Engineering Thermodynamics; John Wiley, Hoboken (2006)
- R. S. Berry et Al.; *Thermodynamic optimization of finite-time processes*; John Wiley, Chichester (200)

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Material suministrado a través de Studium.

10.- Evaluación

Consideraciones Generales

La evaluación de la asignatura contempla tanto el trabajo diario del estudiante, verificado mediante una evaluación continua, como el aprovechamiento global de la asignatura, que será analizado mediante una prueba final.

Criterios de evaluación

Para superar la asignatura el estudiante debe obtener una nota mínima de 5 sobre 10. Los pesos relativos de cada uno de los elementos de evaluación son los siguientes:

Instrumento	Peso mín.	Peso máx.
Participación en actividades presenciales	15	20
Presentación de trabajos	30	50
Prueba final	35	50

Instrumentos de evaluación

Participación en actividades presenciales: No se valorará la mera asistencia a las clases, sino que se requerirá la participación activa en ellas.

Presentación de trabajos: Los estudiantes realizarán uno o más trabajos que serán expuestos ante todo el grupo durante el curso.

Prueba final: Se realizará en las fechas propuestas en la planificación docente y tendrá una duración de unas tres horas.

Recomendaciones para la evaluación.

Se recomienda la asistencia y participación activa en las clases. También se recomienda llevar la asignatura al día y utilizar las tutorías siempre que sea necesario.

Recomendaciones para la recuperación.

Sólo es recuperable la parte de la calificación correspondiente al examen final, manteniéndose la nota de la evaluación continua (participación y trabajos).

MATERIALES PARA LA NANOTECNOLOGÍA

1.- Datos de la Asignatura

Código	305339	Plan	2016	ECTS	4.5	
Carácter	Optativa	Curso	1°	Periodicidad	1.° Semestre	
Área	Electromagnetismo, Electrónica y Óptica					
Departamento	Física Aplicada					
Plataforma	Plataforma:	Studium				
Virtual	URL de Acceso:	http://studium.usal.es				

Datos del profesorado

Profesor Coordinador	Raúl Rengel Estévez Grupo / s Ú		Único
Departamento	Física Aplicada		
Área	Electrónica		
Centro	Facultad de Ciencias		

Despacho	T2105 (Edificio Trilingüe)			
Horario de tutorías	Lunes y miércoles de 12 a 13:30 y de 17:00 a 18:30			
URL Web	http://diarium.usal.es/raulr			
E-mail	raulr@usal.es	Teléfono	923294500, ext. 6327	

Profesor Coordinador	Julio San Román Álvarez de Lara Grupo / s Único			
Departamento	Física Aplicada			
Área	Óptica			
Centro	Facultad de Ciencias			
Despacho	T2312 (Edificio Trilingüe)			
Horario de tutorías	Martes, miércoles y jueves de 10 a 12			
URL Web	http://optica.usal.es/GIOE			
E-mail	jsr@usal.es	Teléfono	923294500, ex	t. 1337

Profesor Coordinador	Luis Torres Rincón	Grupo / s	Único
Departamento	Física Aplicada		
Área	Electromagnetismo		

Centro	Facultad de Ciencias		
Despacho	T3309 (Edificio Trilingüe)		
Horario de tutorías	Lunes, martes, miércoles y jueves de 12 a 13:30		
URL Web	http://campus.usal.es/fisapli		
E-mail	luis@usal.es	Teléfono	923294500, ext. 6325

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

La materia forma parte del Módulo II: Física Aplicada

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Esta asignatura permite que los estudiantes conozcan las propiedades específicas de los materiales a escala nanométrica, sus múltiples aplicaciones y las tecnologías basadas en ellas.

Perfil profesional.

Debido a la creciente importancia que tiene hoy en día el desarrollo de materiales para la Nanotecnología y su relación directa con la Física, las competencias adquiridas en esta asignatura resultan de vital importancia para el desempeño profesional de los futuros titulados.

3.- Recomendaciones previas

No existen recomendaciones previas específicas.

4.- Objetivos de la asignatura

Manejar las propiedades de los diversos materiales magnéticos, electrónicos y ópticos que forman parte de estructuras nanométricas.

Identificar el papel que juega la baja dimensionalidad en el comportamiento de nanoestructuras y las aplicaciones a que puede dar lugar.

Saber explotar las propiedades de las heteroestructuras de dimensiones nanométricas en aplicaciones electrónicas, magnéticas y ópticas.

Utilizar los principios físicos que guían el diseño y desarrollo de nuevos nanomateriales.

Manejar las múltiples aplicaciones que tienen de forma cotidiana diversos sistemas nanométricos.

5.- Contenidos

Contenidos teóricos:

Tema 1. Materiales ópticos

Control de la respuesta óptica: Técnicas de modificación del índice de refracción. Aplicaciones.

Nanoestructuras ópticas: Materiales ópticos multicapa.

Materiales ópticos avanzados: Cristales fotónicos y metamateriales.

Tema 2. Materiales electrónicos

Nanoescalado y técnicas de fabricación.

Fenómenos de transporte electrónico a escala nanométrica.

Heterouniones semiconductoras y campos de aplicación. Estructuras semiconductoras de baja dimensionalidad.

Grafeno.

Tema 3. Materiales magnéticos

Materiales magnéticos y propiedades asociadas.

Nanoestructuras magnéticas: películas delgadas, nanotiras, arrays de dots, nanopartículas, heteroestructuras.

Aplicaciones: grabación magnética, memorias magnéticas, nanosociladores.

6.- Competencias a adquirir

Se deben relacionar las competencias que se describan con las competencias generales y específicas del título. Se recomienda codificar las competencias (CG xx1, CEyy2, CTzz2) para facilitar las referencias a ellas a lo largo de la guía.

Básicas/Generales.
CB6, CB7, CB8, CB9, CB10, CG1

Específicas.
CE2, CE4, CE5, CE6, CE7

Transversales.

7.- Metodologías docentes

Sesiones magistrales: exposición de los contenidos de la asignatura

Seminarios: trabajo en profundidad sobre un tema. Ampliación de contenidos de sesiones magistrales.

Pruebas objetivas de tipo test y/o preguntas cortas.

8.- Previsión de distribución de las metodologías docentes

			gidas por el esor	Horas de trabajo	HORAS TOTALES
		Horas presenciales.	Horas no presenciales.	autónomo	
Sesiones magistr	ales	22.5		52.5	75
	En aula				
Duźstiese	En el laboratorio				
Prácticas	En aula de informática				
	De campo				
De visualización (visu)					
Seminarios		9		21	30
Exposiciones y debates					
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		2.25		5.25	7.5
	TOTAL	33.75		78.75	112.5

9. - Recursos

Libros de consulta para el alumno

"Fundamentals of Photonics", B.E.A. Saleh y M.C. Teich, John Wiley & Sons 2nd Edition. 2007.

"Introduction to nanoelectronics", V. V. Mitin et al., Cambridge University Press, 2008

"Magnetism in Condensed Matter", Stephen Blundell, Oxford University Press, 2001

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

John Pendry, "Metamaterials in the sunshine" News & Views 5, 599 (2006).

W.J. Padilla et al. "Negative refractive index metamaterials" Materials Today 9, 28 (2006).

"The physics of low dimensional semiconductors: an introduction", John H. Davies, Cambridge University Press, 1998

K. S. Novoselov et al., "A roadmap for graphene", Nature, vol. 490, Oct. 2012

Samuel D. Bader, "Magnetism in low dimensionality", Surface Science 500, 172-188 (2002)

10. - Fyaluación

Las pruebas de evaluación que se diseñen deben evaluar si se han adquirido las competencias descritas, por ello, es recomendable que al describir las pruebas se indiquen las competencias y resultados de aprendizaje que se evalúan.

Consideraciones Generales

El conjunto de todos los instrumentos de evaluación (cuestionarios, test, entregas, seminarios, etcétera) tendrá una ponderación del 90% de la nota final, y la participación y asistencia activa en las actividades de la asignatura tendrá el 10% restante.

Criterios de evaluación

La prueba objetiva tendrá una ponderación del 50% en la nota final. La realización y presentación de trabajos individuales o de grupo del 30%, y la participación y asistencia activa a las actividades de la asignatura un 20%.

Instrumentos de evaluación

Prueba objetiva de tipo test y/o cuestiones cortas sobre los contenidos vistos en la asignatura.

Asistencia y participación activa en las actividades de la asignatura.

Realización individual o en grupo de ejercicios y/o trabajos y discusión de los mismos.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta asignatura se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Las pruebas de recuperación extraordinarias se realizarán conforme al calendario que apruebe la Junta de Centro. Al igual que en la evaluación ordinaria, se recomienda haber asistido y participado activamente en las actividades programadas durante el periodo lectivo.

NANOELECTRÓNICA Y APLICACIONES EN ALTA FRECUENCIA

Código	305340	Plan	2016	ECTS	4.5	
Carácter	Optativa	Curso	1°	Periodicidad	2°Cuatrimestre	
Área	Electrónica					
Departamento	Física Aplicada					
Plataforma	Plataforma:	Studium				
Virtual	URL de Acceso:	http://stu	udium.usal.es			

Datos del profesorado

Profesor Coordinador	Tomás González Sánchez Grupo / s	
Departamento	Física Aplicada	
Área	Electrónica	
Centro	Facultad de Ciencias	
Despacho	T2103 (Trilingüe)	
Horario de tutorías Lunes, Martes, Miércoles y Jueves de 16:30 a 18:00 h		30 a 18:00 h

URL Web	http://diarium.usal.es/tomasg			
E-mail	tomasg@usal.es	Teléfono	923294500, Ext.6329	

Profesor	Yahya Moubarak Meziani Grupo / s					
Departamento	Física Aplicada	Física Aplicada				
Área	Electrónica	Electrónica				
Centro	Facultad de Ciencias					
Despacho	T2101 (Trilingüe)					
Horario de tutorías	Martes y miércoles de 17 a 20 h					
URL Web						
E-mail	meziani@usal.es Teléfono 923294500, Ext.6331					

Profesor	Javier Mateos López Grupo / s		
Departamento	Física Aplicada		
Área	Electrónica		
Centro	Facultad de Ciencias		
Despacho	T2104 (Trilingüe)		

Horario de tutorías	Lunes y miércoles de 16:30 a 19:30 h			
URL Web				
E-mail	javierm@usal.es	Teléfono	923294500, Ext.6328	

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Es una materia que forma parte del Módulo II "Física Aplicada"

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Se trata de una asignatura optativa en la que se desarrollan los fundamentos de dispositivos electrónicos avanzados que operan a alta frecuencia, desde algunos GHz (1 GHz= 10^9 Hz) hasta THz (1 THz= 10^{12} Hz)) y las aplicaciones en las que se utilizan. Tiene un importante contenido práctico.

Perfil profesional.

Corresponde a un perfil profesional aplicado, orientado al campo de las nanotecnologías y las comunicaciones.

3.- Recomendaciones previas

Haber cursado previamente la asignatura "Materiales para la Nanotecnología" y cursar simultáneamente "Caracterización de materiales y dispositivos".

4.- Objetivos de la asignatura

- Manejar las diferentes familias de dispositivos electrónicos avanzados de dimensiones nanométricas.
- Identificar las limitaciones que imponen los procesos tecnológicos al funcionamiento de los dispositivos.
- Saber utilizar los circuitos equivalentes de los dispositivos en aplicaciones de alta frecuencia.
- Identificar los elementos que limitan la respuesta de los dispositivos a alta frecuencia y diseñar estrategias para su optimización.
- Distinguir las características particulares de la banda de THz y manejar los principios físicos de funcionamiento de las diferentes familias de dispositivos capaces de operar a tales frecuencias.

5 - Contenidos

TEÓRICOS

1. INTRODUCCIÓN

Interés y aplicaciones de las bandas de GHz y THz Materiales semiconductores utilizados en dispositivos de alta frecuencia Principales familias de dispositivos de alta frecuencia Conceptos básicos sobre medidas a alta frecuencia

2. DIODOS GENERADORES DE SEÑALES

Diodos de tiempo de tránsito: IMPATT, BARITT

Dispositivos de transferencia de electrones: diodo Gunn

Multiplicadores de frecuencia

Aplicaciones

3. TRANSISTORES EN ALTA FRECUENCIA

Tecnología y comportamiento a alta frecuencia de transistores Transistor bipolar de heterounión (HBT) Transistor de efecto de campo metal óxido semiconductor (MOSFET) Transistor de electrones de alta movilidad (HEMT) Circuitos equivalentes. Aplicaciones

4. GENERACIÓN Y DETECCIÓN DE THZ

Antenas fotoconductivas para generación de THz Láser de cascada cuántica (QCL) Diodo túnel resonante (RTD) Principios de detección de THz y aplicaciones

PRÁCTICOS

- Prácticas de laboratorio:
- 1. Caracterización DC de dispositivos en oblea
- 2. Analizador vectorial de redes: caracterización de dispositivos hasta 50 GHz
- 3. Dispositivos para THz: QCL, detector piroeléctrico, antena fotoconductiva
- 4. Espectroscopía en THz
- Resolución de problemas referentes a los temas anteriores.
- Elaboración y exposición de problemas y trabajos, supervisados por el profesor, ligados a los temas anteriores.

6.- Competencias a adquirir

Básicas/Generales.

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

CB8. Los estudiantes serán capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

CB9. Los estudiantes sabrán comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida auto-dirigido o autónomo.

CG1. Los estudiantes se familiarizarán con los diversos aspectos involucrados en la investigación, tales como: trabajo teórico; consulta de bibliografía, revistas y bases de datos especializadas; redacción de trabajos de investigación; comunicación, exposición, debate y publicación de resultados.

Específicas.

- CE2. Capacidad para utilizar teorías físicas y métodos matemáticos para modelar y estudiar problemas provenientes de diferentes campos científicos.
- CE3. Capacidad para iniciarse en tareas de investigación interdisciplinar en Física y Matemáticas.
- CE4. Poseer conocimientos físicos y matemáticos avanzados que permitan cursar un Programa de Doctorado y realizar una tesis doctoral, desarrollando para ello la comprensión de los conceptos.
- CE5. Capacidad para incorporarse a grupos de investigación e I+D+i en Física y Matemáticas a través de la interacción con los grupos de la Universidad de Salamanca especializados en dichos campos.
- CE6. Capacidad para contribuir a las aplicaciones de la Física y las Matemáticas en empresas de innovación tecnológica.
- CE7. Profundizar en un tema de investigación y conocer los avances más recientes en alguna de las actuales líneas de investigación en el ámbito de la Física y las Matemáticas.

Los estudiantes serán capaces de identificar los principios físicos de funcionamiento de los dispositivos electrónicos nanométricos y las particularidades que les permiten operar a frecuencias elevadas

Los estudiantes sabrán utilizar los circuitos equivalentes de los dispositivos para representar su funcionamiento en circuitos de alta frecuencia

7.- Metodologías docentes

Clases magistrales de teoría

Se expondrá el contenido teórico de los temas en clases presenciales para trasmitir a los estudiantes los conocimientos ligados a las competencias previstas.

Resolución de problemas

Los conocimientos teóricos se aplicarán en clases prácticas de resolución de problemas. Se desarrollarán los conceptos clave por medio de problemas modelo. Asimismo se propondrán problemas adicionales para resolución individual de los estudiantes.

Seminarios

En los seminarios se ilustrarán aspectos concretos de los temas, bien por medio de presentaciones y/o simulaciones de los dispositivos estudiados dirigidas por el profesor, bien mediante la presentación y discusión de artículos científicos (en forma de trabajos) por parte de los estudiantes.

Clases prácticas (laboratorio)

Las clases prácticas se desarrollarán en laboratorios de investigación de dispositivos semiconductores de RF y de THz. Consistirán, por una parte, en el conocimiento y manejo de la instrumentación para caracterizar dispositivos a alta frecuencia y, por otra, en la realización de medidas DC y RF en dispositivos concretos (diodos y transistores) y experiencias de espectroscopia en THz. Se fomentará la interacción profesor/estudiante y el trabajo en equipo como forma de adquirir las competencias transversales inherentes al máster. Los estudiantes elaborarán informes acerca de los resultados obtenidos en las prácticas.

Interacción online

Se realizará mediante la plataforma Studium de la USAL. Se utilizará para la planificación, el intercambio de documentos y la interacción habitual con los estudiantes para el desarrollo de las actividades previamente descritas.

8.- Previsión de distribución de las metodologías docentes

			idas por el esor	Horas de trabajo	HORAS
		Horas	Horas no	autónomo	TOTALES
		presenciales.	presenciales.	aaconomo	
Sesiones magistral	es	18		18	36
	En aula	6		8	14
Prácticas	En el laboratorio	12		12.5	24.5
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		6		8	14
Exposiciones y debates					
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos				6	6
Otras actividades (detallar)					
Exámenes		3		15	18
	TOTAL	45		67.5	112.5

9.- Recursos

Libros de consulta para el alumno

- S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, Wiley Interscience (2007).
- S. Prasad, H. Schumacher and A. Gopinath, *High-speed Electronics and Optoelectronics*, Cambridge University Press (2009)
- W. Liu, Fundamentals of III-V Devices, Wiley Interscience (1999).
- S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (Optical Science and Engineering), CRC Press (2008).
- G. Carpintero, E. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Raisanen, Semiconductor

Terahertz Technology: Devices and Systems at Room Temperature Operation, Wiley-IEEE Press (2015)

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

- T. G. van de Roer, Microwave Electronic Devices, Chapman & Hall (1994).
- M. Shur, GaAs Devices and Circuits, Plenum Press (1987).
- K. Sakai, Terahertz Optoelectronics (Topics in Applied Physics), Springer (2005).

Los estudiantes también manejarán artículos científicos.

10.- Evaluación

Consideraciones Generales

El grado de adquisición de las competencias se valorará a través de los resultados de aprendizaje de carácter teórico y práctico obtenidos. Tal valoración se realizará mediante actividades de evaluación continua y una prueba escrita final.

Criterios de evaluación

Las actividades de evaluación continua supondrán el 70% de la nota total de la asignatura y la prueba escrita final el restante 30%. Para superar la asignatura será necesario alcanzar en la prueba escrita final al menos un 30% de la nota máxima de la misma.

Instrumentos de evaluación

Evaluación continua (70%):

- Resolución y discusión de ejercicios. Elaboración y defensa de trabajos (35%).
- Participación en las clases prácticas y elaboración de informes (35%).

Prueba escrita final (30%):

- Examen escrito de cuestiones teóricas.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta asignatura se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Se realizará una prueba escrita de recuperación que supondrá el 70% de la nota. El restante 30% corresponderá a la nota de la evaluación continua obtenida en los apartados de ejercicios/trabajos (15%) y prácticas (15%), que no será recuperable.

ASTROFÍSICA RELATIVISTA Y COSMOLOGÍA

Código	305341	Plan	2016	ECTS	4.5	
Carácter	Optativo	Curso	1.°	Periodicidad	1.er semestre	
Área	Física Teórica					
Departamento	Física Fundamenta	ndamental				
Plataforma	Plataforma:	Moodle				
Virtual	URL de Acceso:	https://moodle2.usal.es/				

Profesor Coordinador	Fernando Atrio Barandela Grupo / s	
Departamento Física Fundamental		
Área	Física Teórica	
Centro	Facultad de Ciencias	
Despacho	Edificio Trilingüe, T19	
Horario de tutorías	Martes de 11:00 a 12:00	

URL Web			
E-mail	atrio@usal.es	Teléfono	923 294 437

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia
Física Teórica
Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.
Perfil profesional.

3.- Recomendaciones previas

Los alumnos deben ser graduados en Física. Es recomendable haber cursado asignaturas de la rama de Física Teórica: Introducción a la Astrofísica, Relatividad General, Introducción a la Cosmología, Mecánica Cuántica y Física Nuclear y de Partículas

4.- Objetivos de la asignatura

El alumno debe alcanzar un conocimiento básico de los procesos físicos que ocurren en el Universo en sus etapas más tempranas de su evolución y su influencia en la formación de galaxias y estructura a gran escala. Cada alumno analizará algún artículo reciente para fomentar su capacidad crítica y desarrollar su manejo y comprensión de la bibliografía.

5.- Contenidos

El contenido de la asignatura es teórico, distribuido en los siguientes apartados:

- Introducción.
- El modelo de Big-Bang.
- Historia térmica del Universo. Inflación.
- El Universo inhomogéneo
- Teoría de Perturbaciones lineales en Cosmología.
- Origen de la perturbaciones en la distribución de materia.
- Fondo Cósmico de Microondas.
- Problemas abiertos

6.- Competencias a adquirir

Competencias Básicas: CB6, CB7,CB8, CB9,CB10

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

CB8. Los estudiantes serán capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

CB9. Los estudiantes sabrán comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias Específicas: CE1, CE2, CE3, CE4, CE5, CE7

- CE1. Conocer las bases teóricas del estado actual de la Física y las Matemáticas
- CE2. Capacidad para utilizar teorías físicas y métodos matemáticos para modelar y estudiar problemas provenientes de diferentes campos científicos.
- CE3 Capacidad para iniciarse en tareas de investigación interdisciplinar en Física y Matemáticas.
- CE4. Poseer conocimientos físicos y matemáticos avanzados que permitan cursar un Programa de Doctorado y realizar una tesis doctoral, desarrollando para ello la comprensión de los conceptos.
- CE5. Capacidad para incorporarse a grupos de investigación e I+D+i en Física y Matemáticas a través de la interacción con los grupos de la Universidad de Salamanca especializados en dichos campos.
- CE6. Capacidad para contribuir a las aplicaciones de la Física y las Matemáticas en empresas

de innovación tecnológica.

CE7. Profundizar en un tema de investigación y conocer los avances más recientes en alguna de las actuales líneas de investigación en el ámbito de la Física y las Matemáticas.

7.- Metodologías docentes

Describir las metodologías docente de enseñanza-aprendizaje que se van a utilizar, tomando como referencia el catálogo adjunto.

Se dedicarán 45 horas a las clases magistrales, seminarios de problemas y exposiciones para exponer y madurar el contenido de la asignatura. Se promoverá la participación de los alumnos en los seminarios.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas Horas presenciales.	por el profesor Horas no presenciales.	Horas de trabajo autónomo	HORAS TOTALES
Sesiones magis	strales				
	En aula	30		55	85
-	En el laboratorio				
Prácticas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		5		10	15
Exposiciones y debates					
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		4		8.5	12.5
	TOTAL	39		73.5	112.5

9.- Recursos

Libros de consulta para el alumno

- "Cosmology". P. Coles, F. Lucchin. Wiley (2002).
- "Modern Cosmology". S. Dodelson. Academic Press (2003).
- "The Early Universe". E.W. Kolb, M.S. Turner. Addison-Wesley (1990).
- "Structure Formation in the Universe". T. Padmanabhan. Cambridge (1993).
- "Cosmological Physics". J.A. Peacock. Cambridge (1998).

- "Large Scale Structure of the Universe". P.J.E. Peebles. Princeton (1980).
- "General Relativity". N. Straumann. Springer (2013)

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Bases de datos:

http://esoads.eso.org/

http://arXiv.org/

10.- Evaluación

Consideraciones Generales

Criterios de evaluación

La evaluación consistirá en la resolución de ejercicios y el análisis de un problema utilizando la bibliografía técnica reciente. Los alumnos deberán entregar resueltos una colección de problemas y la memoria del trabajo propuesto.

Instrumentos de evaluación

La resolución de problemas proporcionará aproximadamente un 30% de la nota final. Se demostrará la asimilación de conocimientos y el grado de madurez alcanzado en la discusión de la bibliografía reciente por medio de un examen escrito y/o una exposición pública (contribuyendo con el 30% de la nota). Un prueba final completará el proceso de evaluación y tendrá un valor del 40% restante.

Recomendaciones para la evaluación.

Recomendaciones para la recuperación.

INTERACCIONES FUNDAMENTALES

Código	305342	Plan	2016	ECTS	4.5
Carácter	Optativo	Curso	1.°	Periodicidad	2° Semestre
Área	Física Atómica, Molecular y Nuclear				
Departamento	Física Fundamental				
Plataforma	Plataforma:				
Virtual	URL de Acceso:				

Profesor Coordinador	Eliecer Hernández Gajate Grupo / s		
Departamento	Física Fundamental		
Área	Física Atómica, Molecular y Nuclear		
Centro	Facultad de Ciencias		
Despacho	Trilingüe T3345		
Horario de tutorías Martes, miércoles y jueves de 11 a 13h			

URL Web			
E-mail	gajatee@usal.es	Teléfono	923 294798

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Física Teórica

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Asignatura optativa

Perfil profesional.

Investigador

3.- Recomendaciones previas

Cursar previamente las asignaturas de Teoría Cuántica de Campos I y Simetrías en Física

4.- Objetivos de la asignatura

Adquirir conocimientos sobre las teorías vigentes de las interacciones fuerte y electrodébil Ser capaz de realizar cálculos de procesos electrodébiles y fuertes Adquirir conocimientos sobre las bases del modelo standard de la partículas elementales Ser capaz de realizar cálculos de la estructura de los hadrones en los modelos de quarks

5.- Contenidos

Modelo Estándar electrodébil Oscilaciones de neutrinos La interacción fuerte . Cromodinámica cuántica Modelos de hadrones. Modelos de saco y modelo quark constituyente

6.- Competencias a adquirir

Específicas.

CE1 CE2 CE3 CE4 CE5 CE6 CE7

Básicas/Generales.

CB6 CB7 CB8 CB9 CB10 CG1

Transversales.

Sesiones magistrales Seminarios

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de	HORAS
		Horas	Horas no	trabajo	TOTALES
			presenciales.	autónomo	TOTALLS
Sesiones mag	gistrales	30		55	85
	- En aula				
Prácticas	- En el laboratorio				
Practicas	- En aula de informática				
	- De campo				
	- De visualización (visu)				
Seminarios		5		10	15
Exposiciones	y debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		4		8,5	12,5
TOTAL		39		73.5	112,5

9 - Pecursos

Libros de consulta para el alumno

Quantum Field Theory. F. Mandl and G. Shaw. John Wiley and Sons 1999

Foundations of Quantum Chromodynamics. T. Muta. World Scientific Lectures Notes in Physics Vol 5 1987.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

10.- Evaluación

Consideraciones Generales

La evaluación se realizará por medio de la participación en las actividades presenciales, la presentación de trabajos en los seminarios y una prueba final escrita.

Criterios de evaluación

Participación en actividades presenciales: 10%

Presentación de trabajos: 45%

Prueba escrita final: 45%

Instrumentos de evaluación

- Trabajos presentados
- Exposición en los seminarios de los trabajos realizados
- Prueba final escrita

Recomendaciones para la evaluación.

Recomendaciones para la recuperación.

Solo podrá recuperarse la prueba final que se realizará siguiendo el mismo formato que la primera.

RELATIVIDAD GENERAL AVANZADA

Código	305343	Plan		ECTS	4.5
Carácter	Optativo	Curso	1	Periodicidad	2° semestre
Área	Física Teórica				
Departamento	Física Fundamental				
Plataforma	Plataforma: Studium				
Virtual	URL de Acceso:	cceso: https://moodle2.usal.es/			

Datos del profesorado

Profesor Coordinador	Marc Mars Lloret Grupo / s			
Departamento	Física Fundamental			
Área	Física Teórica			
Centro	Facultad de Ciencias			
Despacho	T3340 (2ª planta, edificio Trilingüe)			
Horario de tutorías	Lunes y miércoles de 11:00 a 12:00			

URL Web			
E-mail	marc@usal.es	Teléfono	923 294500 Ext 4765

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Es una materia (= asignatura) que forma parte del "Módulo III: Física Teórica", que consta de siete asignaturas.

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Es una asignatura optativa del Máster Universitario en Física y Matemáticas.

Perfil profesional.

Es adecuada para aquellos estudiantes que deseen formarse con un perfil teórico en Física.

3.- Recomendaciones previas

ASIGNATURAS QUE SE RECOMIENDA HABER CURSADO PREVIAMENTE:

Asignaturas de "Astrofísica y Cosmología" y de "Gravitación" del Grado en Física de la Universidad de Salamanca o asignaturas con contenidos equivalentes.

4.- Objetivos de la asignatura

- Conocer y saber aplicar el formalismo de Cartan de bases móviles.
- Conocer la descomposición irreducible del tensor de curvatura.
- Saber utilizar el concepto de grupo de transformaciones y de isometrías.
- Conocer la relación entre espacios maximalmente simétricos y espacios con curvatura constante.
- Ser capaz de obtener la descomposición de las ecuaciones de Einstein de vacío en ecuaciones de ligadura y ecuaciones de evolución.
- Conocer el concepto de hiperbolicidad global y el papel que juega en el problema de Cauchy de las ecuaciones de Einstein.
- Entender el concepto de asintoticidad plana.
- Comprender las dificultades inherentes a la definición de energía y momento del campo gravitatorio.
- Conocer las definiciones de masa cuasi-local de Komar y de Hawking.
- Entender la definición de ADM de la energía y momento lineal totales de un espacio-tiempo asintóticamente plano.
- Conocer el teorema de positividad de la energía en Relatividad General y comprender su relevancia.
- Conocer el formalismo cociente para espacio-tiempo estacionarios así como el concepto de horizonte de Killing y de ergosfera.
- Conocer la propiedades fundamentales de la métrica de Kerr.
- Entender la demostración de Bunting y Masood-ul-Alam de la unicidad de agujeros negros estáticos.
- Entender el significado y las aplicaciones del teorema de rigidez de Hawking, así como sus limitaciones.
- Conocer las ideas principales del teorema de unicidad del agujero negro de Kerr.

5.- Contenidos

TEMA	EPÍGRAFE
Tema 2: Descomposición 3+1 de las ecuaciones de Einstein	Geometría de hipersuperficies no degeneradas. Identidades de Gauss y Codazzi. Ecuaciones de ligadura. Ecuaciones de evolución. Hiperbolicidad global. Problema de Cauchy en relatividad general.
Tema 3: Energía y momento totales	Masa de Komar. Masa de Hawking Asintoticidad plana. Masa y momento ADM Teorema de positividad de la masa.
Tema 4: Espacio-tiempos estacionarios y horizontes de Killing	Formalismo cociente. Ecuaciones de Einstein en el cociente. Hipersuperficies luminosas Horizontes de Killing Gravedad superficial. Espacio-tiempo de Kerr.
Tema 5. Teoremas de unicidad de espacio-tiempos estacionarios	Demostración en el caso estático. Teorema de rigidez de Hawking. Propiedades de las aplicaciones armónicas. Unicidad en el caso estacionario y con simetría axial.

6.- Competencias a adquirir

	/ 6	•
-5	pecíf	าดลร
	P	

CE1, CE2, CE3, CE4, CE5, CE7

Básicas/Generales.

CB6, CB7, CB8, CB9, CB10

Transversales.

7.- Metodologías docentes

Se expondrá el material de la asignatura en clases magistrales de contenido fundamentalmente teórico. Estos conocimientos se afianzaran mediante la resolución de casos prácticos y de problemas. Los alumnos deberán no solo resolver estos problemas sino ser capaces de exponerlos en clase de manera clara. La resolución de problemas formará parte esencial del contenido formativo de esta asignatura.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas	por el profesor	Horas de	HORAS
		Horas	Horas no	trabajo	TOTALES
		presenciales.	presenciales.	autónomo	TOTALLS
Sesiones magi	strales	25		30	55
	n aula	5		25	30
Prácticas	n el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		5		10	15
Exposiciones y debates					
Tutorías					
Actividades de seguimiento online					
Preparación d	e trabajos				

Otras actividades (detallar)			
Exámenes	4	8.5	12.5
TOTAL	39	73.5	112.5

9.- Recursos

Libros de consulta para el alumno

- · Sean Carroll, "Spacetime and Geometry: An introduction to General Relativity", Adison Wesley, 2004
- Eric Poisson, "A relativists's toolkit", The mathematics of black hole mechanics", Cambridge University Press, 2004.
- · Robert Wald, "General Relativity", University of Chicago Press, Chicago, 1984.
- · N. Straumann, "General Relativity—with applications to astrophysics", Springer Verlag 2004.
- · Y. Choquet-Bruhat, "General Relativity and the Einstein Equations", Oxford Mahtematical Monographs, Oxford University Press, 2009.
- \cdot S.W. Hawking, G.F.R. Ellis, "The large scale structure of spacetime", Cambridge University Press, 1973.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

10.- Evaluación

Consideraciones Generales

La evaluación de las competencias de la materia se basará principalmente en el trabajo continuado, controlado periódicamente con diferentes instrumentos, y en una prueba escrita

final.

Criterios de evaluación

La evaluación valorará la adquisición de las competencias de carácter teórico y práctico que se comprobará tanto por actividades de evaluación continua como por una prueba escrita final.

Las actividades de evaluación continua supondrán 30% de la nota total de la asignatura.

La prueba escrita final será un 70% de la nota total de la asignatura. Para poder superar la asignatura se requiere que la calificación obtenida en esta prueba supere el 40% de la nota máxima de la prueba.

Instrumentos de evaluación

Se utilizarán los siguientes:

- Evaluación continua: Entrefa de ejercicios, así como exposición en clase de los mismos.
- Prueba escrita: Al finalizar el curso se realizará un examen escrito en el que que se evaluarán los objetivos de aprendizaje adquiridos por los estudiantes. Será un 70% de la nota total de la asignatura. Para poder superar la asignatura, se requiere que la calificación obtenida en esta prueba escrita supere el 40% de la nota máxima de la prueba.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Se realizará una prueba escrita de recuperación.

SIMETRIAS EN FÍSICAS

1.- Datos de la Asignatura

Código	305344	Plan	2013	ECTS	4.5
Carácter	Optativa	Curso	1°	Periodicidad	Semestral
Área	Física Atómica, Molecular y Nuclear				
Departamento	Física Fundamental				
Plataforma	Plataforma:	: Studium			
Virtual	URL de Acceso:				

Datos del profesorado

Profesor Coordinador	Alfredo Valcarce Grupo / s 1		1
Departamento	Física Fundamental		
Área	Física Atómica, Molecular y Nuclear		
Centro	Facultad de Ciencias / Edifico Trilingüe		
Despacho	T3343, Edificio Trilingüe		
Horario de tutorías	A concertar con el profesor		

URL Web			
E-mail	valcarce@usal.es	Teléfono	923 294764

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Simetrías en Física

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Es una asignatura optativa de utilidad para cualquier alumno del máster

Perfil profesional.

Es una materia adecuada en cualquier perfil vinculado al máster en Física

3.- Recomendaciones previas

4.- Objetivos de la asignatura

Adquirir conocimientos sobre las simetrías en los procesos físicos Aplicar los resultados de las teoría de grupos a la descripción de las simetrías Resolver problemas físicos aplicando los conocimientos anteriores

5. - Contenidos

- 1.- Simetrías y leyes de conservación
 - 1.1.- Introducción.
 - 1.2.- Simetrías en Mecánica Clásica.
 - 1.3.- Simetrías en Mecánica Cuántica.
 - 1.4. Simetrías y degeneración.
- 2.- Elementos de teoría de grupos
 - 2.1.- Conceptos generales.
 - 2.2.- Representaciones de grupos.
 - 2.3.- Representaciones irreducibles.
 - 2.4.- Tablas de caracteres.
 - 2.5.- Ruptura de degeneración.
- 3.- Grupos y álgebras de Lie
 - 3.1.- Conceptos generales.
 - 3.2.- Generadores infinitesimales.
 - 3.3.- Álgebras de Lie simples y semisimples.
 - 3.4.- Constantes de estructura. Operadores de

Casimir.

- 3.5.- Forma estándar de las álgebras de Lie.
- 3.6.- Diagramas de raíces.
- 4.- El grupo de rotaciones
 - 4.1.- Generadores infinitesimales, representaciones irreducibles y caracteres.
 - 4.2.- Series y coeficientes de Clebsh-Gordan.
 - 4.3.- Operadores tensoriales irreducibles.
 - 4.4.- Teorema de Wigner-Eckart. Teorema de proyección.
 - 4.5.- Aplicaciones.
- 5.- Simetrías unitarias. Tableros de Young
 - 5.1.- El grupo SU(n).
 - 5.2.- Quarks e isoespín.
 - 5.3.- Diagramas de peso de SU(3).
 - 5.4. Tableros de Young.
 - 5.5.- Bariones y mesones.
 - 5.6.- Multiquarks. Exóticos
- 6.- Otras aplicaciones de interés
 - 6.1.- Propiedades generales del problema de dos cuerpos.
 - 6.2.- Espectroscopía hadrónica.

Básicas/Generales.

CB6, CB7, CB8, CB9, CB10

Específicas.

CE1, CE2, CE3, CE8, CE9

Transversales.

La asignatura se impartirá a través de clases magistrales con apuntes subidos en la plataforma studium. En cada tema se realizarán ejemplos prácticos que los alumnos deberán repetir en casos similares en los seminarios.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo	HORAS
		Horas presenciales.	Horas no presenciales.	autónomo	TOTALES
Sesiones magistra	les	5		20	25
	En aula				
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		5		10	15
Exposiciones y de	bates				
Tutorías		15			15
Actividades de seguimiento online					
Preparación de trabajos		20		28	48
Otras actividades (detallar)					
Exámenes		2		10.5	12.5
	TOTAL	47		68.5	115.5

9.- Recursos

Libros de consulta para el alumno

- 1. Leçons sur la Théorie des Groupes et les Symétries des Particules Elémentaires; H. Bacry.Ed. Gordon and Breach.
- 2. Group Theory and its Applications to Physical Problems; M. Hamermesh. Ed. Dover.
- 3. Group Theory in Subnuclear Physics; Fl. Stancu. Ed. Oxford University Press.
- 4. Angular Momentum in Quantum Mechanics; A.R. Edmonds. Ed. Princeton University Press.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

L	

10.- Evaluación

Consideraciones Generales

Se realizará un seguimiento detallado de la formación a través de los seminarios con una prueba final oral y/o escrita

Criterios de evaluación

- 10% Participación en las actividades presenciales
- 40% Realización y entrega de ejercicios
- 30% Defensa oral de ejercicios resueltos
- 20% Prueba final escrita

Instrumentos de evaluación

Participación activa en las actividades presenciales

Realización y entrega de ejercicios

Exposición y defensa oral de problemas

Prueba final escrita

Recomendaciones para la evaluación.

Seguimiento de la asignatura y trabajo constante

Recomendaciones para la recuperación.

SISTEMAS DE MUCHOS CUERPOS

1.- Datos de la Asignatura

Código	305345	Plan	2014	ECTS	4.5
Carácter	Optativo	Curso		Periodicidad	s1
Área	Física Teórica				
Departamento	Física Fundamental				
Plataforma	Plataforma:	forma: STUDIUM			
Virtual	URL de Acceso:	https://moodle2.usal.es/			

Datos del profesorado

Profesor Coordinador	M Ángeles Pérez García	Grupo / s
Departamento	Física Fundamental	
Área	Física Teórica	
Centro	Facultad de Ciencias	
Despacho	39 Edificio Trilingüe	

Horario de tutorías	Jueves de 12 a 14h		
URL Web			
E-mail	mperezga@usal.es	Teléfono	923 29 4437

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

La asignatura pretende que los alumnos obtengan un conocimiento y competencias básicas en el ámbito de los sistemas de muchos cuerpos, necesaria y complementaria para entender sistemas más extensos y complejos que frecuentemente aparecen en Física.

Perfil profesional.

Docencia Universitaria o Investigación

Docencia no universitaria

Administración pública

Empresas de Banca, Finanzas y Seguros

Consultorías

Empresas

3.- Recomendaciones previas

Conocimientos básicos de Mecánica Estadística y Mecánica Cuántica.

4.- Objetivos de la asignatura

Comprender la importancia de los efectos de un medio denso en las magnitudes físicas de un sistema y saber aplicar el concepto de función de distribución de un sistema complejo.

Ser capaz de plantear y resolver problemas físicos en terminos de funcionales de la densidad para problemas concretos.

Entender el significado de la función de Green para interacciones en un medio denso y relacionarlas con el análogo de vacío.

Adquirir conocimientos sobre los fenómenos de *pairing* y su efecto en los fenómenos de superconductividad y superfluidez.

5 - Contenidos

- Tema 1. -Teoría de funciones de distribución. Funcionales de la densidad. Temperatura finita.
- Tema 2.- Aproximaciones de Hartree y Hartree-Fock. Modelos colectivos, respuesta lineal.
- Tema 3.-Funciones de Green en el medio. Núcleos y materia nuclear.
- Tema 4.-Fluidos cuánticos. Superconductividad y superfluidez.
- Tema 5.-Cálculo numérico en las teorías de muchos cuerpos en sistemas densos.

1000	petenci	36 3 3	danimi
	PI - I C - I I C OI		

Básicas y generales: CB6, CB7, CB8, CB9, CB10, CG1

Específicas:

Aprender a modelizar de forma sencilla sistemas de muchos cuerpos no resolubles de forma exacta

Ser capaz de aplicar los métodos generales de resolución de problemas de muchos cuerpos a problemas concretos en física.

Adquirir conocimientos sobre la forma de describir sistemas infinitos y ser capaz de aplicarlos al estudio de casos seleccionados.

7.- Metodologías docentes

La metodología a seguir consistirá en una parte de clases magistrales expositivas donde se explicarán los conceptos básicos necesarios para conseguir los objetivos, de acuerdo al programa adjunto, junto con una serie de clases prácticas de resolución de problemas . Además en la parte no presencial de la asignatura se podrán proponer al alumno la resolución de problemas supervisados por el profesor periódicamente que permitirán al alumno reforzar contenidos y orientarle en la consecución de las competencias previstas.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo	HORAS
		Horas presenciales.	Horas no presenciales.	autónomo	TOTALES
Sesiones magist	rales	24		43	67
	En aula	6		12	18
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		5		10	15
Exposiciones y o	debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos				8.5	8.5
Otras actividades (detallar)					
Exámenes		2			2
	TOTAL	37		73.5	110.5

9.- Recursos

Libros de consulta para el alumno

Alexander L. Fetter, John Dirk Walecka, Quantum Theory of many-particle systems, Ed. Dover (2013) (ISBN-13: 9780486428277)

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Philipe Martin, Francois Rothen, Many-body problems and quantum field theory: an introduction. Ed. Springer, Nueva York (2002). (ISBN: 978-3-642-05965-0)

Piers Coleman, Introduction to Many-Body Physics, Ed. Rutgers University, New Jersey (2015) (ISBN-13: 9780521864886)

10 - Fyaluación

Consideraciones Generales

La evaluación de las competencias de la materia se basará principalmente en el trabajo continuado, controlado periódicamente con diferentes instrumentos de evaluación, y conjuntamente con una prueba escrita final.

Criterios de evaluación

La evaluación valorará la adquisición de las competencias de carácter teórico y práctico que se comprobará tanto por actividades de evaluación continua como por una prueba escrita final.

Las actividades de evaluación continua supondrán un 50% de la nota total de la asignatura. La prueba escrita final será un 50% de la nota total de la asignatura.

Instrumentos de evaluación

Evaluación continua:

Se valorará la participación activa en seminarios, entrega de problemas y trabajos así

como en las tutorías. Será un 50% de la nota total de la asignatura.

Prueba escrita:

Al finalizar el curso se realizará un examen escrito que contendrá tanto preguntas de tipo conceptual como de problemas y en la que se evaluarán los objetivos de aprendizaje adquiridos por los estudiantes. Será un 50% de la nota total de la asignatura.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Se realizará una prueba escrita que servirá para recuperar la nota global de la asignatura.

TEORÍA CUÁNTICA DE CAMPOS I

1.- Datos de la Asignatura

Código	305346	Plan	2014	ECTS	4,5		
Carácter	Optativa	Curso		Periodicidad	Semestral S1		
Área	Física Teórica						
Departamento	Física Fundamental						
Plataforma	Plataforma:	lataforma: Studium.usal.es					
Virtual	URL de Acceso:	https://moodle.usal.es					

Datos del profesorado

Profesor Coordinador	Juan Mateos Guilarte Grupo / s		
Departamento	Física Fundamental		
Área	Física Teórica		
Centro	Facultad de Ciencias		
Despacho	N° 12 Casas del Parque (II)		
Horario de tutorías	Martes y Jueves de 12:00 h a 13:00 h		

URL Web	http://campus.usal.es/~mpg/			
E-mail	guilarte@usal.es	Teléfono	923 29 45 00 Ext 1543	

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Asignatura optativa del Máster Universitario en Física y Matemáticas

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

La oferta presentada permite que el estudiante, a través de las asignaturas Teoría Cuántica Campos I y II, pueda adquirir una formación orientada hacia la Física Teórica.

Perfil profesional.

Los titulados del Máster en Física y Matemáticas están capacitados para una gran variedad de perfiles profesionales: Docencia universitaria e investigación, Docencia no universitaria, etc.

3.- Recomendaciones previas

Conocimientos previos de Mecánica Cuántica y Teoría de campos al nivel del Grado en Física.

4.- Objetivos de la asignatura

Los estudiantes deben ser capaces de abordar el estudio de las teorías cuánticas de campos renormalizables, tanto escalares, como los casos de la electrodinámica cuántica y los campos de gauge.

5.- Contenidos

Teoría clásica de campos

Cuantización de los campos libres

Campos en interacción

Teoría de perturbaciones y reglas de Feynman

Correcciones radiativas

6.- Competencias a adquiri

Básicas/Generales.

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

CB8. Los estudiantes serán capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

CB9. Los estudiantes sabrán comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Específicas.

continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

- CE1. Los estudiantes deberán saber aplicar métodos destinados a interpretar y relacionar características de datos procedentes de la observación de fenómenos físicos, de los experimentos o de la teoría.
- CE2. Los estudiantes deberán identificar y aplicar los métodos que permitan la descripción de sistemas de muchas partículas.
- CE3. Los estudiantes profundizarán sus conocimientos en diferentes campos de la Física, entrando en contacto con problemas que son actualmente objeto de investigación.
- CE8. Los estudiantes deberán ser capaces de adentrarse en nuevos campos de la Física de modo independiente a través de la lectura de artículos científicos y de otras fuentes de aprendizaje.

7.- Metodologías docentes

DESCRIPCIÓN DE LAS METODOLOGÍAS						
METODOLOGÍA DESCRIPCIÓN						
Clases magistrales de teoría	Se expondrá el contenido teórico de los temas en clases presénciales para transmitir a los estudiantes de Máster los conocimientos ligados a las competencias previstas.					

Resolución de problemas	Los conocimientos teóricos se fijaran por medio de clases prácticas de resolución de problemas. Se desarrollarán los conceptos clave por medio de problemas especialmente diseñados al efecto, de forma que los estudiantes adquieran las competencias previstas.
Seminarios de teoría y problemas	Los seminarios tienen como objetivo fundamental que los estudiantes puedan exponer las dificultades y dudas que les hayan surgido, tanto en la comprensión de la teoría como en la resolución de los problemas. Se fomentará la discusión entre los estudiantes para aclarar todas las cuestiones.
Trabajos	A partir de las clases teóricas y de problemas los alumnos habrán de realizar trabajos personales supervisados por el profesor. Los trabajos consistirán en la resolución individual de problemas y su posterior presentación al resto de los estudiantes. En estos seminarios, los alumnos deberán exponer ante sus compañeros las técnicas aplicadas a la resolución de los problemas. Se fomentará la discusión y crítica por parte de todos los estudiantes.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor Horas Horas no presenciales.		Horas de trabajo autónomo	HORAS TOTALES
Sesiones magis	trales	30	presericiates.	30	60
	En aula				
Dufations	En el laboratorio				
Prácticas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		10		22.5	32.5
Exposiciones y	debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		5		15	20
	TOTAL	45		67.5	112.5

9.- Recursos

Libros de consulta para el alumno

- F. Mandl and G. Shaw. Quantum Field Theory. John Wiley & Sons. 1984.
- J.J. Sakurai. Advanced Quantum Mechanics. Addison-Wesley P. C. 1967.
- M. Veltman. *Diagramatica*. The path to Feynman Diagrams. Cambridge University Press. 1994.
- S. Weinberg. *The Quantum Theory of Fields*. Volumes I and II. Cambridge University Press. 1996.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

D. Tong. *Quantum Field Theory*. Lectures University of Cambridge. 2006. http://damtp.cam.ac.uk/user/tong/qft.html

10.- Evaluación

Consideraciones Generales

La evaluación de las competencias de la materia se basará en el trabajo continuado, controlado periódicamente con diferentes instrumentos de evaluación, y conjuntamente con una prueba final escrita.

Criterios de evaluación

La evaluación tendrá en cuenta la adquisición de las competencias de carácter teórico y práctico que se comprobará tanto por actividades de evaluación continua como por una prueba final escrita.

Las actividades de evaluación continua supondrán el 30% de la nota total de la asignatura.

La prueba escrita final será un 70% de la nota total de la asignatura. Para poder superar la asignatura se requiere que la calificación obtenida en esta prueba supere el 40% de la nota máxima de la prueba.

Instrumentos de evaluación

Se utilizarán los siguientes:

Evaluación continua:

Elaboración y exposición de trabajos, ejercicios y problemas: Se valorará tanto la elaboración como la exposición de los mismos serán un 30% de la nota total de la asignatura.

Prueba escrita:

Al finalizar el curso se realizará un examen escrito que contendrá tanto preguntas de tipo conceptual como de problemas y en la que se evaluarán los objetivos de aprendizaje adquiridos por los estudiantes. Será un 70% de la nota total de la asignatura. Para poder superar la asignatura, se requiere que la calificación obtenida en esta prueba escrita supere el 40% de la nota máxima de la prueba.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Se realizará una prueba escrita de recuperación que servirá para recuperar la parte de la nota correspondiente a la prueba escrita final.

TEORÍA CUÁNTICA DE CAMPOS II

1.- Datos de la Asignatura

Código	305347	Plan	2016	ECTS	4,5		
Carácter	Optativo	Curso	1°	Periodicidad	Semestral		
Área	Física Atómica, Molecular y Nuclear						
Departamento	Física Fundamental						
Plataforma	Plataforma:	Studium					
Virtual	URL de Acceso:	https://moodle2.usal.es/					

Datos del profesorado

Profesor Coordinador	David Rodríguez Entem Grupo / s 1		1	
Departamento	Física Fundamental			
Área	Física Atómica, Molecular y Nuclear			
Centro	Facultad de Ciencias			
Despacho	T3336 (Ed. Trilingüe)			
Horario de tutorías	Lunes, martes y miercoles de 11:30 a 13:30			

URL Web			
E-mail	entem@usal.es	Teléfono	923 294500 ext. 6123

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

La asignatura pertenece al Módulo III: Física Teórica cuyo objetivo es que el estudiante adquiera una formación que le permita elaborar teorías y modelos utilizando el lenguaje matemático, con la finalidad tanto de poder analizar como de predecir el comportamiento de los sistemas físicos.

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

La asignatura es una asignatura optativa del Plan de Estudios para la especialización en Física Teórica. Profundiza en aspectos introducidos en la asignatura Teoría Cuántica de Campos I y presenta nuevos temas. Es una herramienta importante para estudiantes interesados en Física de Partículas y en particular para estudiantes cursando la asignatura de Interacciones Fundamentales del mismo módulo.

Perfil profesional.

Investigación en Física Teórica

3.- Recomendaciones previas

Es necesario haber cursado la asignatura Teoría Cuántica de Campos I del primer cuatrimestre y es aconsejable haber cursado la asignatura de Simetrías en Física.

4.- Objetivos de la asignatura

El objetivo de esta asignatura es profundizar en el estudio de las teorías cuánticas de campos, para que los estudiantes comprendan los conceptos de regularización y renormalización, y su aplicación al estudio de teorías gauge no abelianas.

5 - Contenidos

- 1.- Correcciones cuánticas. Regularización y renormalización. El grupo de renormalización.
- 2.- Teorías gauge no abelianas.
- 3.- Simetrías. Ruptura espontánea de simetría. Teorema de Goldstone. El mecanismo de Higgs.
- 4.- Anomalías y aplicaciones.
- 5.- Interpretación Wilsoniana del grupo de renormalización. Breve introducción a las teorías cuánticas de campos en el retículo.

6.- Competencias a adquirir

Básicas/Generales.
CB6, CB7, CB8, CB9, CB10
Específicas.
CE1, CE2, CE3, CE4, CE5, CE7
CE1, CE2, CE3, CE4, CE5, CE7 Transversales.

7.- Metodologías docentes

Describir las metodologías docente de enseñanza-aprendizaje que se van a utilizar, tomando como referencia el catálogo adjunto.

La asignatura de desarrollará por medio de clases magistrales en las que se presentarán a los estudiantes los contenidos de la asignatura. Además se desarrollarán una serie de seminarios en los que los estudiantes resolverán problemas o presentarán algún tema relacionado que deberán preparar previamente.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor Horas Horas no presenciales.		Horas de trabajo autónomo	HORAS TOTALES
Sesiones magistrale	es			55	55
	En aula	30			30
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios	Seminarios			10	15
Exposiciones y deb	ates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		4		8.5	12.5
	TOTAL	39		73.5	112.5

9 - Recursos

Libros de consulta para el alumno

"An Invitation to Quantum Field Theory" L. Álvares-Gaumé, M.A. Vázquez-Mozo, Lecture Notes in Physics 839.

"The Quantum Field Theory of Fields II", S. Weinberg, Cambridge University Press

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

"The Quantum Field Theory of Fields I", S. Weinberg, Cambridge University Press

"Quantum Field Theory", C. Itzykson, J.-B. Zuber, Dover Publications Inc.

10.- Evaluaciór

Consideraciones Generales

La evaluación se realizará por medio de la presentación de trabajos en los seminarios, que corresponderá a la evaluación contínua, y una prueba final.

Criterios de evaluación

La ponderación de los sistemas de evaluación será:

Presentación de trabajos: 30%

Prueba final: 70%

Instrumentos de evaluación

Trabajos realizados.

Presentación y defensa de los trabajos.

Prueba final. Podrá consistir en la realización de un trabajo y/o una prueba presencial.

Recomendaciones para la evaluación.

Para poder evaluar la adquisición de las competencias previstas es aconsejable la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

La parte de evaluación contínua no será recuperable. La prueba final será siguiendo el mismo formato que en la primera convocatoria.

ALGEBRA CONMUTATIVA Y HOMOLÓGICA

1.- Datos de la Asignatura

Código	305348	Plan		ECTS	4.5
Carácter	Optativo	Curso	2016-17	Periodicidad	semestral
Área	Algebra				
Departamento	Matemáticas				
Plataforma	Plataforma:	Studium			
Virtual	URL de Acceso:				

Datos del profesorado

Profesor Coordinador	Maria Teresa Sancho de Salas Grupo / s		
Departamento	Matemáticas		
Área	Álgebra		
Centro	Facultad de Ciencias		
Despacho	M2331		

Horario de tutorías	Lunes, Martes, Miércoles, Jueves y Viernes de 1 a 2.		iernes de 1 a 2.
URL Web			
E-mail	sancho@usal.es	Teléfono	923294942

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia		
Especialidad 3 Geometría en Variedades		
Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.		
Asignatura optativa		
Perfil profesional.		

3 Recomendaciones pre	evias		
·			

4.- Objetivos de la asignatura

- Conocer y manejar las técnicas algébricas y homológicas y aplicarlas al estudio de las variedades.
- Calcular espectros de anillos y morfismos algebraicos entre variedades.
- Operar con el producto tensorial y la localización de módulos.
- Calcular dimensiones y multiplicidades de anillos locales.
- Calcular el cono tangente a variedad algebraica afín en un punto y utilizarlo para saber si el anillo es regular.
- Determinar si una extensión finita de números enteros es íntegramente cerrada calculando sus puntos singulares.
- Utilizar las resoluciones para el cálculo de grupos Ext y Tor.

5.- Contenidos

Ideales. Espectro de un anillo. Topología de Zariski.

Localización de módulos. Producto tensorial. Módulos planos, inyectivos y proyectivos. Graduado de un módulo.

Teoría de la dimensión. Anillos regulares. Morfismos finitos. Valoraciones.

Módulos diferenciales. Homología. Resoluciones. Grupos Ext y Tor.

6.- Competencias a adquirir

Básicas/Generales.	
CB6,CB7,CB8,CB9,CB10,CG1	
Específicas.	
CE1,CE2,CE3,CE4	
Transversales.	
7 Metodologías docentes	

		Horas dirigidas por el profesor		Horas de trabajo	HORAS
			Horas no presenciales.	autónomo	TOTALES
Sesiones mag	gistrales	30		30	60
	En aula				
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios	Seminarios			10	15
Exposiciones	y debates				
Tutorías		5		2.5	7.5
Actividades de seguimiento online					
Preparación de trabajos		5		15	20
Otras actividades (detallar)					
Exámenes					
	TOTAL	45		67.5	112.5

9.- Recursos

Libros de consulta para el alumno

Navarro González: "Algebra Conmutativa Básica". Manuales Unex, nº 19.

M.F Atiyah, I.G Macdonal:"Introducción al Álgebra Conmutativa". Editorial Reverte.

MacLane Saunder: "Homology". Springer Verlag 1967.

Frank W. Andersson, Kent R. Fuller: "Rings and Categories of Modules". Graduate Text in Mathematics. Springer-Verlag .

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Consideraciones Generales

La evaluación será continua con la posibilidad de un examen final

Criterios de evaluación

Instrumentos de evaluación

La evaluación se hará mediante la resolución de problemas, exposiciones teóricas y trabajos.

Recomendaciones para la evaluación.

Recomendaciones para la recuperación.

GEOMETRÍA ALGEBRAICA DE LA CURVA

Código	305349	Plan		ECTS	4,5
Carácter	Optativo	Curso	1°	Periodicidad	1°Cuatrimestre
Área	Álgebra				
Departamento	Matemáticas				
Plataforma	Plataforma:	Studium			
Virtual	URL de Acceso: https://moodle.usal.es				

Profesor Coordinador	José María Muñoz Porras Grupo / s	
Departamento	Matemáticas	
Área	Álgebra	
Centro	Facultad de Ciencias	
Despacho	M-1321 Edificio de la Merced	
Horario de tutorías	Lunes, martes y miércoles de 12:00 a 14	:00

URL Web			
E-mail	jmp@usal.es	Teléfono	923 294947

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Módulo IV: Geometría de Variedades.

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Se trata de una asignatura optativa. Dentro del plan de estudios, contribuye de manera esencial al estudio de las curvas con técnicas de geometría algebraica.

3.- Recomendaciones previas

Ninguna

4.- Objetivos de la asignatura

Conocer las propiedades de las curvas algebraicas y de las superficies de Riemann.

Entender la teoría clásica de sistemas lineales y de las inmersiones proyectivas de las curvas algebraicas.

Conocer los problemas básicos relacionados con el móduli de curvas algebraicas y de variedades abelianas.

Estudiar algunos problemas sobre el móduli de fibrados y, en particular, sobre las Jacobianas.

5. - Contenidos

- 1) TEMA 1:Curvas algebraicas y superficies de Riemann.
- 2) TEMA 2: Teorema de Riemann-Roch y dualidad. Inmersiones proyectivas de las curvas algebraicas.
- 3) TEMA 3: Móduli de curvas algebraicas. Móduli de curvas elípticas.
- 4) TEMA 4: Móduli de fibrados vectoriales. Estructura de la Jacobiana y aplicaciones a la teoría cuántica de campos.

5)

6.- Competencias a adquirir

Básicas

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

CB9. Los estudiantes sabrán comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Genéricas

CG1. Los estudiantes se familiarizarán con los diversos aspectos involucrados en la investigación, tales como: trabajo teórico; consulta de bibliografía, revistas y bases de datos especializadas; redacción de trabajos de investigación; comunicación, exposición, debate y publicación de resultados.

Específicas

- CE1. Conocer las bases teóricas de la Física y Matemáticas.
- CE2. Capacidad para utilizar teorías físicas y métodos matemáticos para modelar y estudiar problemas provenientes de diferentes campos científicos.
- CE3. Capacidad para iniciarse en tareas de investigación interdisciplinar en Física y Matemáticas a nivel suficiente para iniciar un proyecto de investigación de forma supervisada en alguna de las áreas de la Física o Matemáticas.
- CE4. Poseer conocimientos físicos y matemáticos avanzados que permitan cursar un Programa de Doctorado y realizar una tesis doctoral, desarrollando para ello la comprensión de los conceptos.

7.- Metodologías

Se fomentará la participación en las clases y el alumno ha de realizar un trabajo de estudio y ampliación para consolidar conocimientos, en particular, de la parte práctica. Por tanto, además de las clases magistrales que serán participativas, también habrá seminarios, exposición de trabajos y tutorías.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo	HORAS
		Horas presenciales.	Horas no presenciales.	autónomo	TOTALES
Sesiones magist	rales	30		30	60
	En aula				
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios	Seminarios			2,5	7,5
Exposiciones y o	lebates				
Tutorías		5		2,5	7,5
Actividades de seguimiento online					
Preparación de trabajos		5		2,5	7,5
Otras actividades (detallar)					
Exámenes					
	TOTAL	45		37,5	82,5

9 - Recursos

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

<u>Hartshorne</u>, <u>Robin</u> Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. ISBN: 0-387-90244-9

<u>Iwasawa, Kenkichi</u> Algebraic functions. <u>Translations of Mathematical Monographs, 118.</u> *American Mathematical Society, Providence, RI*, 1993. xxii+287 pp. ISBN: 0-8218-4595-0 Fulton, William Curvas algebraicas, Reverté, ISBN-13: 978-8429150759

Mumford, D.; Fogarty, J.; Kirwan, F. Geometric invariant theory. Third edition. Springer-Verlag, Berlin, 1994. xiv+292 pp. ISBN: 3-540-56963-4

10.- Fyaluación

Criterios de evaluación

Se valorará la adquisición de las competencias previstas por medio de las actividades de evaluación continua y del trabajo o examen final.

Las actividades de evaluación continua supondrán el 60% de la nota. La prueba final el 40% restante.

Instrumentos de evaluación

Se utilizarán los siguientes:

Evaluación continua: Se valorará tanto la elaboración de los trabajos realizados, su rigor y claridad, así como su correcta exposición en clase. La valoración de los trabajos supondrá un 60% de la nota total de la asignatura.

Trabajo o examen final: Consistirá en un proyecto que versará sobre temas propuestos por el profesor o sugeridos por los propios alumnos.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Incidir en las partes más débiles y aprovechar las tutorías con el profesor para mejorar el nivel.

HACES Y COHOMOLOGÍA

1.- Datos de la Asignatura

Código	305350	Plan		ECTS	4.5
Carácter	Optativo	Curso	2016-17	Periodicidad	semestral
Área	Geometría y Topo	logía			
Departamento	Matemáticas				
Plataforma	Plataforma:	Studium			
Virtual	URL de Acceso:				

Datos del profesorado

Profesor Coordinador	Fernando Sancho de Salas Grupo / s	
Departamento	Matemáticas	
Área	Geometría y Topología	
Centro	Facultad de Ciencias	
Despacho	M3316	
Horario de tutorías	Lunes, Martes, Miércoles, Jueves y Viern	es de 1 a 2.

URL Web			
E-mail	fsancho@usal.es	Teléfono	923294943

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Especialidad 3 Geometría en Variedades

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Asignatura optativa

Perfil profesional.

3.- Recomendaciones previas

4.- Obietivos de la asignatura

Traducir problemas y conceptos clásicos en términos de haces y cohomología. Expresar problemas de obstrucción de propiedades locales a propiedades globales en términos cohomológicos.

5. - Contenidos

- 6) Prehaces y haces.
- 7) Cohomología de haces. Imágenes directas superiores.
- 8) Clasificación de fibrados vectoriales y revestimientos.
- Anillo de cohomología.

6.- Competencias a adquirii

Básicas/Generales.
CB6, CB7, CB9, CB10, CG1
Específicas.
CE1, CE2, CE3, CE4
Transversales.

7 Metodologías docentes		

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo	HORAS TOTALES
		Horas presenciales.	Horas no presenciales.	autónomo	TOTALES
Sesiones magis	strales	30	F	30	60
	En aula				
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios	Seminarios			10	15
Exposiciones y	Exposiciones y debates				
Tutorías		5		2.5	7.5
Actividades de seguimiento online					
Preparación de trabajos		5		15	20
Otras actividades (detallar)					
Exámenes					
	TOTAL	45		67.5	112.5

9.- Recursos

Libros de consulta para el alumno

Godement, Roger, Topologie algébrique et théorie des faisceaux. Publications de l'Institut de Mathématique de l'Université de Strasbourg, XIII. Actualités Scientifiques et Industrielles, No. 1252. *Hermann, Paris*, 1973.

<u>Bredon, Glen E.</u>, <u>Sheaf theory</u>. Second edition. <u>Graduate Texts in Mathematics</u>, <u>170.</u> Springer-Verlag, New York, 1997. xii+502 pp.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.
10 Evaluación
Consideraciones Generales
La evaluación será continua con la posibilidad de un examen final
Criterios de evaluación
Instrumentos de evaluación
La evaluación se hará mediante la resolución de problemas, exposiciones teóricas y trabajos.
au evaluación se nara mediante la resolución de prostemas, exposiciónes teoricas y crasajos.
Recomendaciones para la evaluación.
Recomendaciones para la evaluación.
Recomendaciones para la recuperación.
·

SUPERFICIES DE RIEMANN

1.- Datos de la Asignatura

Código	305351	Plan		ECTS	4'5		
Carácter	Optativo	Curso		Periodicidad	C1		
Área	Análisis Matemático						
Departamento	Matemáticas						
Plataforma:							
Virtual	URL de Acceso:						

Datos del profesorado

Profesor Coordinador	Pascual Cutillas Ripoll Grupo / s				
Departamento	Matemáticas				
Área Análisis Matemático					
Centro	Facultad de Ciencias				
Despacho	Ed. Merced, M2330				
Horario de tutorías	Miércoles y jueves 12 a 13:30				

URL Web			
E-mail	pcr@usal.es	Teléfono	923 294457

Bloque formativo al que pertenece la materia

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Optativa

Perfil profesional.

Docencia universitaria e investigación.

Conocimiento de las asignaturas de Análisis Matemático del Grado en Matemáticas.

4.- Objetivos de la asignatura

Alcanzar un conocimiento razonable de la teoría de las variedades complejas de dimensión 1.

5.- Contenidos

- Preliminares sobre superficies de Riemann. Generalizaciones de algunos teoremas sobre funciones en abiertos de C.
- Aplicaciones holomorfas, propias y no constantes entre superficies de Riemann. Revestimientos ramificados. Extensión de aplicaciones holomorfas, propias y no constantes. La superficie de Riemann compacta asociada a una curva proyectiva algebraica irreducible.
- Existencia de solución para las ecuaciones no homogéneas de Cauchy-Riemann en un abierto U de C. Nulidad de la cohomología (de Cech) de U con coeficientes en el haz de las funciones holomorfas. Teoremas de Mittag-Leffler y Weierstrass.
- Finitud de la cohomología de una superficie de Riemann compacta V con coeficientes en el haz de las funciones holomorfas. Teorema de Riemann de existencia de funciones meromorfas en V.
- Nulidad de la cohomología de un abierto relativamente compacto de una superficie de Riemann abierta con coeficientes en el haz de las funciones holomorfas. Lema de Weyl. Teorema de Behnke-Stein. Generalizaciones de los teoremas de Mittag-Leffler y Weierstrass.

6.- Competencias a adquirir

Básicas/Generales.

Específicas.

- Conocimiento de las nociones básicas sobre superficies de Riemann y los ejemplos importantes.
- Conocimiento de la relación existente entre los revestimientos ramificados holomorfos y las aplicaciones holomorfas, propia y no constantes entre superficies de Riemann.
- Saber que a toda curva proyectiva compleja, algebráica e irreducible se le puede asociar una superficie de Riemann compacta cuyo cuerpo de funciones meromorfas es isomorfo al cuerpo de funciones algebráicas sobre la curva.
- Manejar las nociones básicas sobre cohomologia de Cech con coeficientes en un haz para poder aplicarlas a la comprensión y las demostraciones de los principales teoremas de existencia de funciones meromorfas en superficies de Riemann.

Transversales.

- Saber aplicar los conocimientos matemáticos a la resolución de problemas.
- Desarrollar habilidades de aprendizaje para lprender estudios posteriores.
- Saber comunicar conocimientos, tanto por escrito como de forma oral.

7.- Metodologías docentes

Clases magistrales.

Mediante esta fórmula se desarrollarán los contenidos teóricos en los que se incluyen las definiciones de los diferentes conceptos y su comprensión a partir de ejemplos. Se fijan así los conocimientos ligados a las competencias previstas y se da paso a la posible resolución de

problemas sencillos relacionados con lo expuesto en las clases teóricas.

Trabajos personales.

A partir de esas clases teóricas y prácticas podrá proponerse a los estudiantes la realización de pequeños trabajos personales, contando con el apoyo del profesor. Los estudiantes podrán compartir en clase con sus compañeros y con el profesor las dudas que encuentren y obtener solución a las mismas.

Los trabajos entregados serán corregidos por el profesor y comentados posteriormente en las tutorías personales, con el fin de que puedan detectar sus posibles deficiencias, tanto de comprensión como de redacción.

Realización de exámenes

Exposiciones por escrito de partes de la teoría y posible resolución de problemas.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor Horas Horas no		Horas de trabajo	HORAS
		presenciales.	presenciales.	autónomo	TOTALES
Sesiones magistrales		20		30	
	En aula	10		25	
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios		8		12'5	
Exposicione	s y debates				
Tutorías		3			
Actividades de seguimiento online					
Preparación de trabajos					
Otras activio	Otras actividades (detallar)				
Exámenes		4			
	TOTAL	45		67'5	112'5

9.- Recursos

Libros de consulta para el alumno

Funciones de variables complejas, por J. Muñoz Díaz. Apuntes. Univ. Salamanca. Lectures on Riemann Surfaces, por O. Forster. Springer. 1981.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

- Algebraic curves and Riemann Surfaces, por R. Miranda. American Mathematical Society, 1995.
- An Introduction to Riemann Surfaces, por T. Napier and M. Ramachandran. Birkhauser, 2011.
- Lectures on Riemann Surfaces, por R. Gunning. Princeton Univ. Press, 1967.

- Riemann Surfaces, por L. Ahlfors y L. Sario. Princeton Univ. Press, 1960.
- Riemann Surfaces, por S. Donaldson. American Mathematical Society, 2011.
- Riemann Surfaces by Way of Complex Analytic Geometry, por D. Varolin. American Mathematical Society, 2011.

10.- Evaluación

Consideraciones Generales

Se evaluará el nivel de conocimientos teóricos y prácticos adquirido. Se exigirá un mínimo en cada una de las actividades a evaluar y en cada bloque del temario, evitando así el desconocimiento absoluto de alguna parte de la materia y la no realización de las actividades.

Criterios de evaluación

Un 30% de la puntuación final podrá ser obtenida mediante exposiciones por escrito de partes de la teoría explicadas por el profesor o de los trabajos realizados por los propios alumnos. La evaluación final constará de una parte teórica y posiblemente de una parte práctica. La evaluación del examen final será de hasta un 70 % de la calificación definitiva.

Instrumentos de evaluación

- Exposiciones teóricas.
- Exposición de problemas.
- Exámenes escritos:
- De teoría (conocimiento de conceptos, enunciados y razonamientos expuestos en las clases magistrales)
- De problemas (resolución de enunciados análogos a los explicados en las clases prácticas y de cuestiones breves).

Recomendaciones para la evaluación.

En la preparación de la parte teórica es importante comprender (los conceptos, razonamientos, etc.) y evitar la memorización automática.

En cuanto a la preparación de problemas, es necesario ejercitarse con los problemas que aparecen en las listas entregadas por el profesor y en la bibliografía.

También se pueden resolver las dudas mediante el manejo de la bibliografía y acudiendo al profesor.

Recomendaciones para la recuperación.

Analizar los errores cometidos en las exposiciones por escrito y en los exámenes (acudiendo para ello a la revisión). Trabajar en su preparación con las mismas recomendaciones realizadas para la evaluación.

MÉTODOS DE GEOMETRÍA DIFERENCIAL EN TEORÍAS GAUGE

1.- Datos de la Asignatura

Código	305352	Plan 2016 ECTS		4.5			
Carácter	Optativa	Curso	Curso 1 Periodicidad		Semestral		
Área	Geometría y Topología						
Departamento	Matemáticas						
Plataforma	Plataforma:	na: Campus virtual de la Universidad de Salamanca					
Virtual	URL de Acceso:	Studium.usal.es					

Datos del profesorado

Profesor Coordinador	Tomás Carlos Tejero Prieto Grupo / s		
Departamento	Matemáticas		
Área Geometría y Topología			
Centro Facultad de Ciencias			
Despacho Planta Sótano. Ed. Merced. M0107			
Horario de tutorías Lunes, Martes, Miércoles y Viernes 13-14, Jueves 13-15		1, Jueves 13-15	

URL Web			
E-mail	carlost@usal.es	Teléfono	923 294456

Bloque formativo al que pertenece la materia

Materias Optativas

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Optativa

Perfil profesional.

Investigador

Ninguna

Los objetivos generales de la asignatura son, por una parte presentar las ideas básicas de la teoría de grupos de Lie, al nivel necesario para el estudio de la teoría de conexiones en fibrados principales, y por otra presentar el núcleo central de la geometría diferencial de fibrados principales, la teoría de conexiones y su aplicación a la formulación de las teorías de Yang-Mills.

5.- Contenidos

1. GRUPOS Y ÁLGEBRAS DE LIE

Definiciones. Ejemplos. Campos invariantes. Álgebra de Lie de un grupo de Lie. Trivialidad del fibrado tangente. Formas invariantes. Ecuaciones de estructura. Forma de Maurer-Cartan.

2. MORFISMOS DE GRUPOS DE LIE Y SUBGRUPOS

Morfismos de grupos de Lie. Ejemplos. Morfismos inducidos entre las álgebras de Lie. Propiedades. Subgrupos de Lie. Propiedades locales de los morfismos de grupos de Lie. Teorema del subgrupo cerrado.

3. SUBGRUPOS UNIPARAMÉTRICOS Y APLICACIÓN EXPONENCIAL

Subgrupos uniparamétricos de un grupo de Lie. Existencia de subgrupos uniparamétricos. Completitud de los campos invariantes. Aplicación exponencial. Propiedades. Aplicaciones al estudio de los grupos de Lie conexos. Estructura de los grupos de Lie abelianos.

4. ACCIÓNES DE GRUPOS DE LIE. REPRESENTACIÓN ADJUNTA

Acción de un grupo de Lie sobre una variedad. Órbitas. Grupo de isotropía. Acciones efectivas, libres y transitivas. Ejemplos. Campos fundamentales. Propiedades. Representaciones lineales de un grupo de Lie. Acción de un grupo sobre si mismo por automorfismos internos. Representación adjunta de un grupo de Lie. Representación adjunta del álgebra de Lie de un grupo de Lie.

5. FIBRADOS. FUNCIONES DE TRANSICIÓN. FIBRADOS VECTORIALES

Fibrados diferenciables. Funciones de transición asociadas a un recubrimiento trivializante. Condición de cociclo. Lemas de construcción de fibrados. Fibrados vectoriales. Functores diferenciables. Aplicación a la construcción de fibrados.

6. FIBRADOS PRINCIPALES. SUBFIBRADOS. FIBRADOS INDUCIDOS

Fibrados principales. Ejemplos. Trivializaciones y secciones locales. Funciones de transición de un recubrimiento trivializante. Morfismos de fibrados principales. Subfibrados. Reducción de un fibrado principal. Teorema de reconstrucción de fibrados principales mediante funciones de transición. Funciones de transición y reducciones.

7. FIBRADOS ASOCIADOS A UN FIBRADO PRINCIPAL

las 1-formas de conexión.

Fibrados asociados a un fibrado principal. Propiedades. Aplicaciones equivariantes y secciones de un fibrado asociado. Fibrado vectorial asociado a una representación lineal. Fibrado adjunto.

8. CONEXIONES SOBRE UN FIBRADO PRINCIPAL. FORMAS DE CONEXIÓN Y CURVATURA Sucesión exacta vertical. Conexiones sobre un fibrado principal. Campos horizontales con respecto a una conexión. Levantamiento horizontal de un campo. Formas equivariantes, horizontales y básicas. Forma de conexión. Derivada exterior covariante. Curvatura de una conexión. Ecuación de estructura de Maurer-Cartan. Identidad de Bianchi. Descripción local de

9. CONEXIONES LINEALES INDUCIDAS EN FIBRADOS VECTORIALES ASOCIADOS

Conexiones lineales inducidas por una conexión en un fibrado principal en sus fibrados vectoriales asociados. Curvatura de las conexiones inducidas. Equivalencia entre las conexiones lineales en un fibrado vectorial y las conexiones sobre su fibrado de referencias. Conexiones en el fibrado de referencias de una variedad y conexiones lineales en la variedad. Forma fundamental. Forma de torsión. Ecuaciones de estructura. Identidades de Bianchi. Equivalencia con la formulación mediante conexiones lineales.

10.	FORMUL	ACIÓN DE	LAS TEOR	ÍAS DE YANG-MILLS	

Operador estrella de Hodge. Funcional de Yang-Mills. Ecuaciones de Euler-Lagrange para el funcional de Yang-Mills. Instantones.

Básicas/Generales.

Las que figuran en la memoria del título: CB6, CB7, CB9, CB10, CG1

Transversales.

- Buscar información bibliográfica de forma autónoma.
- Presentar ideas en público con claridad.
- Redactar con precisión y claridad contenidos científicos.

Específicas.

Las que aparecen reflejadas en la memoria del título: CE1, CE2, CE3, CE4. Además:

- Conocer y manejar los resultados básicos de la teoría de grupos de Lie.
- Decidir si un grupo es un grupo de Lie.
- Determinar el álgebra de Lie de un grupo de Lie,
- Conocer los resultados centrales de la geometría diferencial de fibrados principales y la teoría de conexiones.
- Conocer la formulación geométrica de las teorías de Yang-Mills.

7.- Metodologías docentes

El aprendizaje se articulará en las siguientes actividades:

- . Clases presenciales. En estas clases se mostrarán a los estudiantes los conceptos y resultados fundamentales del programa. Se comentarán los puntos clave de las demostraciones cuyo desarrollo detallado, en algunos casos, será objeto de trabajos individuales que realizarán los estudiantes. Asimismo se plantearán y resolverán ejercicios que ayuden a la comprensión de la teoría.
- Seminarios. Cada estudiante presentará un trabajo individualizado al resto de los estudiantes en un seminario. El objetivo de esta actividad es comprobar que el estudiante es capaz de comunicar con claridad los conocimientos y los argumentos que los sustentan al resto de sus compañeros y al profesor.
- Trabajos. En esta actividad no presencial el estudiante elaborará, bajo la supervisión del profesor, los trabajos individuales y colectivos propuestos, los cuales serán entregados al profesor con el propósito de que el estudiante consiga las habilidades que le permitan seguir estudiando e investigando de forma autónoma, así como trabajar en grupo.
- Tutorías. Se programarán 3 horas de tutoría semanales para que el estudiante pueda resolver cuestiones y dudas que le puedan surgir en el proceso de aprendizaje. Estas tutorías son voluntarias.

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor Horas Horas no presenciales.		Horas de trabajo autónomo	HORAS TOTALES
Sesiones magistrales		30	-	30	60
	En aula				
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios	Seminarios			22.5	32.5
Exposiciones y o	Exposiciones y debates				
Tutorías					
Actividades de seguimiento online					
Preparación de trabajos		5		15	20
Otras actividades (detallar)					
Exámenes					
	TOTAL	45		67.5	112.5

9.- Recursos

Libros de consulta para el alumno

1) D. Bleecker, Gauge theory and variational principles. Addison-Wesley Publishing Co., Reading, Mass., 1981. xviii+179 pp.

Los tres primeros capítulos cubren desde los preliminares sobre formas valoradas, grupos y

álgebras de Lie, hasta la teoría de fibrados principales y conexiones. Los estudiantes interesados en conocer en profundidad las teorías gauge pueden encontrar en esta referencia toda la información necesaria.

2) Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, Analysis, manifolds and physics. North-Holland Publishing Co., Amsterdam-New York, 1982. xx+630 pp.

Pueden consultarse para los grupos de Lie las secciones C y D del capítulo II, así como los problemas resueltos en los que se estudian en detalle los grupos clásicos. También son adecuadas la sección B.2 del capítulo II y el Vbis, en los que se tratan los fibrados y las conexiones en fibrados principales, respectivamente.

3) Y. Choquet-Bruhat, C. DeWitt-Morette, Analysis, manifolds and physics. Part II. 92 applications, North-Holland Publishing Co., Amsterdam, 1989. xii+449 pp.

En esta segunda parte del libro anterior se incluyen 92 problemas resueltos, que van desde los grupos de Lie y espacios homogéneos, pasando por las álgebras de Lie de los grupos lineales hasta las transformaciones gauge, la característica de Euler-Poincaré de un fibrado y las formas de Chern-Simons.

4) P.M. Gadea, J. Muñoz-Masqué, Analysis and algebra on differentiable manifolds: A workbook for students and teachers. Kluwer Academic Publishers, Dordrecht, Netherland, 2001. xviii+478pp.

Este libro de ejercicios contiene temas dedicados a los grupos y álgebras de Lie, fibrados principales y conexiones.

5) S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. I. Wiley-Interscience, New York, USA, 1963. xi+329pp.

Las secciones 3 y 5 del capítulo I están dedicadas a los grupos de Lie y los fibrados principales, con un nivel similar al del curso. En los capítulos II y III se estudia la teoría de conexiones en profundidad y con gran rigor.

6) I. Kolár, P. Michor, J. Slovák, Natural operations in differential geometry. Springer-Verlag, Berlin, 1993. vi+434 pp.

El primer capítulo contiene una buena introducción a los grupos de Lie con multitud de ejemplos. En el tercer capítulo se trata la teoría de fibrados diferenciables y conexiones de Ehresmann, incluyendo también las conexiones principales con un nivel similar al del curso.

6) J. M. Lee, Introduction to smooth manifolds, second edition. Springer-Verlag, Berlin, 2013. xv+708 pp.

Este libro puede usarse como referencia de consulta para los resultados previos de Geometría Diferencial. Además los capítulos 7, 20 y 21 pueden ser útiles para la teoría de grupos de Lie, mientras que el capitulo 10 está dedicado al estudio de los fibrados vectoriales.

7) M. M. Postnikov, Leçons de géométrie: géométrie différentielle. Mir, Moscú, 1990. 439 pp.

Pueden consultarse los capítulos 1, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20 y 21, que cubren todos los aspectos que trataremos en el curso, incluyendo multitud de ejemplos.

8) F.W. Warner, Foundations of differentiable manifolds and Lie groups. Springer-Verlag, New York, 1983. viii+272pp.

La teoría de grupos de Lie se trata de una forma clara, formal y moderna, con sus correspondientes ejemplos y ejercicios en el capítulo 3. También puede consultarse el

capítulo 2 para los fibrados vectoriales.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Se utilizarán los siguientes recursos:

- Biblioteca "Abraham Zacut" de la Universidad de Salamanca.
- Internet: En particular la base de datos "MathSciNet", las revistas de acceso electrónico de la Universidad de Salamanca y el archivo de preprints "ArXiv.org".

10.- Evaluación

Consideraciones Generales

La evaluación de la adquisición de las competencias de la materia se basará en el trabajo continuado del estudiante, controlado periódicamente con diversos instrumentos de evaluación.

Criterios de evaluación

La evaluación valorará los siguientes aspectos:

Realización de los trabajos individuales y colectivos. Esta parte contabilizará un 85% de la nota final.

Exposición de un trabajo propuesto por el profesor. Esta segunda parte contabilizará un 15% de la nota final.

Instrumentos de evaluación

Los trabajos realizados por los estudiantes y las exposiciones orales realizadas.

Recomendaciones para la evaluación.

Seguir las actividades programadas en el desarrollo de la materia.

Recomendaciones para la recuperación.

Se realizará un nuevo trabajo.

VARIEDADES ANALÍTICAS

1.- Datos de la Asignatura

Código	305353	Plan ECTS 4.5				
Carácter	Optativa	Curso		Periodicidad	C2	
Área	Análisis Matemático					
Departamento	Matemáticas					
Plataforma	Plataforma:	Studium (Campus virtual de la USAL)				
Virtual	URL de Acceso:	http://moodle.usal.es				

Datos del profesorado

Profesor Coordinador	Jesús Rodríguez Lombardero Grupo / s			
Departamento	Matemáticas			
Área	Análisis Matemático			
Centro	Facultad de Ciencias Químicas			
Despacho	Ed. Merced, M2327			
Horario de tutorías	L, X, J: 9-11, previa cita con los alumnos	5		

URL Web	http://mat.usal.es				
E-mail	<u>jrl@usal.es</u>	Teléfono	923294500, ext. 1566		

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Ampliación de Ecuaciones Diferenciales

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Optativa.

Perfil profesional.

Académico

Docencia Universitaria e Investigación

3.- Recomendaciones previas

Haber cursado las asignaturas de la especialidad de Matemáticas en el primer cuatrimestre del máster.

4.- Objetivos de la asignatura

Identificar los principales ejemplos de variedades analíticas.

Determinar la cohomología de Dolbeault de variedades analíticas.

Aplicar los resultados básicos de la teoría de variedades Kähler.

Utilizar la teoría de Hodge para obtener propiedades geométricas de las variedades Kähler.

5 - Contenido

9) - Variedades analíticas. Ejemplos 10) - Cohomología de Dolbeault. 11)- Espacios de Sobolev y operadores diferenciales12)- Variedades Kähler. Teoría de Hodge. - Variedades de Hodge. Aplicaciones

Básicas/Generales.

13)CB6, CB7, CB9, CB10, CG1

Transversales.

Instrumentales:

Capacidad de organizar y planificar.

Identificación de problemas y planteamiento de estrategias de solución.

Habilidades para recuperar y analizar información desde diferentes fuentes.

Interpersonales:

Comunicación de conceptos abstractos.

Argumentación racional.

Capacidad de aprendizaje.

Inquietud por la calidad.

Sistémicas:

Creatividad.

Habilidad para trabajar en equipos multidisciplinares.

Planificar y dirigir.

Específicas. CE1, CE2, CE3, CE4	

ses magistrales

7.- Metodologías docentes

Mediante esta fórmula se desarrollarán los contenidos teóricos, siguiendo uno o dos libros de referencia, en los que se incluyen las definiciones de los diferentes conceptos y su comprensión a partir de ejemplos, así como las propiedades formuladas como teoremas y corolarios, argumentando su demostración en los casos más notables. Se fijan así los conocimientos ligados a las competencias previstas y se da paso a clases prácticas de resolución de problemas.

rega de trabajos personales y seminarios tutelados

Se se propondrá a los estudiantes la realización de trabajos personales, contando con el apoyo del profesor en seminarios tutelados. En esos seminarios los estudiantes podrán compartir con sus compañeros y con el profesor las dudas que encuentren, obtener solución a las mismas y

comenzar a desempeñar por si mismos las competencias del módulo.

Los trabajos entregados serán corregidos por el profesor y comentados posteriormente en las tutorías personales, con el fin de que puedan detectar sus posibles deficiencias, tanto de comprensión como de redacción.

bajo personal

Además, los estudiantes tendrán que desarrollar por su parte un trabajo personal de estudio y asimilación de la teoría, resolución de problemas propuestos y preparación de los trabajos propuestos.

posición de trabajos

Se podrán realizar exposiciones de partes de la teoría ya explicada por el profesor, o de algún enunciado cuya demostración hubiera quedado pendiente para: o bien, en casos sencillos, ser obtenida por los propios alumnos o bien ser consultada en alguno de los textos de la bibliografía. Se expondrán, además, los trabajos ante el profesor y el resto de compañeros, comentándolos luego en una tutoría personal entre estudiante y profesor.

8.- Previsión de distribución de las metodologías docentes

			gidas por el esor Horas no	Horas de trabajo	HORAS TOTALES
		presenciales.	presenciales.	autónomo	TOTALLS
Sesiones magis	trales				
	En aula	30		30	60
Prácticas	En el laboratorio				
Practicas	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios	·	5		10	15
Exposiciones y	Exposiciones y debates			15	20
Tutorías		5		2.5	7.5
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividad	les (detallar)				
Exámenes					
	TOTAL	45		67.5	112.5

Recursos

Libros de consulta para el alumno

Hörmander, L.: Linear partial differential operators, Springer-Velag, 1969.

Hörmander, L.: An introduction to complex analysis in several variables. Van Nostrand Reinhold Co., 1966.

Muñoz Díaz, J.: Funciones de variables complejas.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Se irá dando a lo largo del curso.

10 - Evaluación

Las pruebas de evaluación que se diseñen deben evaluar si se han adquirido las competencias descritas, por ello, es recomendable que al describir las pruebas se indiquen las competencias y resultados de aprendizaje que se evalúan.

Consideraciones Generales

Se evaluará el nivel adquirido en las competencias y destrezas expuestas, así como el logro de los objetivos propuestos. Se exigirá una nota mínima en cada grupo de actividades a evaluar y en cada bloque del temario, evitando así el desconocimiento absoluto de alguna parte de la materia y la no realización de las actividades.

Criterios de evaluación

Exposición de temas: 40% de la nota final.

Entrega de trabajos: 60% de la nota final.

Instrumentos de evaluación

Actividades a evaluar

Exposición de temas

Trabajos realizados por los alumnos

Recomendaciones para la evaluación.

En todo momento la asistencia a las clases y seminarios es altamente recomendable.

Una vez que el profesor entrega los trabajos corregidos, analizar los errores cometidos, tanto individualmente, como acudiendo a las tutorías.

Ensayo previo de la exposición de los trabajos, para detectar las posibles deficiencias en el entendimiento de los conceptos, así como en la forma de expresión.

Resolver las dudas mediante el manejo de bibliografía, discusiones con los compañeros o acudiendo al profesor.

Recomendaciones para la recuperación.

Analizar los errores cometidos en los exámenes y en los trabajos (acudiendo para ello a la revisión).

Trabajar en su preparación con las mismas recomendaciones realizadas para la evaluación.

VARIEDADES ALGEBRAICAS

1.- Datos de la Asignatura

Código	305354	Plan ECTS 4,5						
Carácter	Optativo	Curso	1°	Periodicidad	1°Cuatrimestre			
Área	Geometría y Topolo	Geometría y Topología						
Departamento	Matemáticas							
Plataforma	Plataforma:	Studium						
Virtual	URL de Acceso:	https://moodle.usal.es						

Datos del profesorado

Profesor Coordinador	Francisco José Plaza Martín Grupo / s			
Departamento	Matemáticas			
Área	Geometría y Topología			
Centro	Facultad de Ciencias			
Despacho	M-1320 Edificio de la Merced			

Horario de tutorías	Lunes, martes y miércoles de 12:00 a 14:00				
URL Web	http://mat.usal.es/~fplaza/				
E-mail	fplaza@usal.es	Teléfono	923 294945		

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Módulo IV: Geometría de Variedades.

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Se trata de una asignatura optativa. Dentro del plan de estudios, contribuye de manera esencial al estudio de variedades con técnicas de geometría algebraica.

3.- Recomendaciones previas

Ninguna

4.- Objetivos de la asignatura

Conocer las variedades algebraicas afines.

Saber usar las propiedades y construcciones básicas de los esquemas.

Manejar los haces cuasicoherentes y coherentes.

Entender aspectos clásicos de geometría en términos de divisores y haces de línea. En particular, en el caso del espacio proyectivo.

5.- Contenidos

- 14) TEMA 1: Variedades algebraicas afines: Espectro de un anillo. Topología de Zariski. Fórmula de la fibra.
- 15)TEMA 2: Esquemas: Espacios anillados en anillos locales. Esquemas afines. Esquemas. Construcciones de esquemas. Esquemas proyectivos. Morfismos de esquemas: morfismos separados, propios y proyectivos. Diferenciales.
- 16) TEMA 3: Divisores y haces de línea. Cohomología de haces coherentes y cuasi-coherentes. Estudio del caso afin y proyectivo. Teorema de Serre. Teorema de finitud. Teorema de Semicontinuidad. Teorema de cambio de base.
- 17) TEMA 4: Construcción de la grassmaniana de un haz de módulos.
- 18)

6 (100	~~	316	r and	26	-Y	0 0	ш	1 4	
	ΨŲΨ,	DY4	ના પ	ᆐᆙ	Lei		Kσl	a La	Lui		

Básicas

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

CB9. Los estudiantes sabrán comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Genéricas

CG1. Los estudiantes se familiarizarán con los diversos aspectos involucrados en la investigación, tales como: trabajo teórico; consulta de bibliografía, revistas y bases de datos especializadas; redacción de trabajos de investigación; comunicación, exposición, debate y publicación de resultados.

Específicas

- CE1. Conocer las bases teóricas de la Física y Matemáticas.
- CE2. Capacidad para utilizar teorías físicas y métodos matemáticos para modelar y estudiar problemas provenientes de diferentes campos científicos.
- CE3. Capacidad para iniciarse en tareas de investigación interdisciplinar en Física y Matemáticas a nivel suficiente para iniciar un proyecto de investigación de forma supervisada en alguna de las áreas de la Física o Matemáticas.
- CE4. Poseer conocimientos físicos y matemáticos avanzados que permitan cursar un Programa de Doctorado y realizar una tesis doctoral, desarrollando para ello la comprensión de los conceptos.

7.- Metodologías

Se fomentará la participación en las clases y el alumno ha de realizar un trabajo de estudio y ampliación para consolidar conocimientos, en particular, de la parte práctica. Por tanto, además de las clases magistrales que serán participativas, también habrá seminarios, exposición de trabajos y tutorías.

8.- Previsión de distribución de las metodologías docentes

		_	idas por el esor	Horas de trabajo	HORAS	
		Horas presenciales.	Horas no presenciales.	autónomo	TOTALES	
Sesiones magistrales		30		30	60	
	En aula					
Prácticas	En el laboratorio					
Practicas	En aula de informática					
	De campo					
	De visualización (visu)					
Seminarios		5		2,5	7,5	
Exposiciones	y debates					
Tutorías		5		2,5	7,5	
Actividades de seguimiento online						
Preparación de trabajos		5		2,5	7,5	
Otras actividades (detallar)				·		
Exámenes						
	TOTAL	45		37,5	82,5	

9.- Recursos

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

- <u>Görtz, Ulrich; Wedhorn, Torsten, Algebraic Geometry I, Vieweg+Teubner, ISBN 978-</u>3-8348-0676-5
- <u>Hartshorne, Robin</u> Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. ISBN: 0-387-90244-9
- <u>Mumford, David</u> The red book of varieties and schemes. Second, expanded edition. <u>Lecture Notes in Mathematics</u>, <u>1358</u>. Springer-Verlag, Berlin, 1999. ISBN: 3-540-63293-X
- Grothendieck, A.; Dieudonné, J. A. Eléments de géométrie algébrique. I.
 Grundlehren der Mathematischen Wissenschaften 166. Springer-Verlag, Berlin,
 1971. ISBN: 3-540-05113-9

10 - Fyaluación

Criterios de evaluación

Se valorará la adquisición de las competencias previstas por medio de las actividades de evaluación continua y del trabajo o examen final.

Las actividades de evaluación continua supondrán el 60% de la nota. La prueba final el 40% restante.

Instrumentos de evaluación

Se utilizarán los siguientes:

Evaluación continua: Se valorará tanto la elaboración de los trabajos realizados, su rigor y claridad, así como su correcta exposición en clase. La valoración de los trabajos supondrá un 60% de la nota total de la asignatura.

Trabajo o examen final: Consistirá en un proyecto que versará sobre temas propuestos por el profesor o sugeridos por los propios alumnos.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas.

Recomendaciones para la recuperación.

Incidir en las partes más débiles y aprovechar las tutorías con el profesor para mejorar el nivel.

MÓDULO V: TRABAJO FIN DE MÁSTER

TRABAJO FIN DE MÁSTER

1.- Datos de la Asignatura

Código	305355	Plan	2016	ECTS	15		
Carácter	TFM	Curso	1°	Periodicidad			
Área	Investigación Opera	Álgebra; Análisis Matemático; Geometría y Topología; Estadística e Investigación Operativa; Matemática Aplicada; Electromagnetismo; Electrónica; Física Aplicada, Física Atómica, Molecular y Nuclear; Física Teórica; Óptica					
Departamento	Depto. Física Aplicada, Depto. Física Fundamental, Depto. Matemáticas, Depto. Matemática Aplicada; Depto. Estadística						
Plataforma: Studium							
Plataforma Virtual	URL de Acceso:	https://moodle.usal.es					

Datos del profesorado

Cada trabajo fin de máster tendrá un tutor asignado entre los profesores del Máster.

2.- Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia

Trabajo Fin de Máster

Papel de la asignatura dentro del Bloque formativo y del Plan de Estudios.

Esta asignatura permite completar las competencias previstas para el estudiante del Máster, al tiempo que adquirir el máximo grado de especialización posible de cara a su iniciación como investigador.

Perfil profesional.

A través de esta asignatura el estudiante adquiere una formación avanzada y especializada que facilita su acceso a los Pro- gramas de Doctorado en Física y Matemáticas.

3.- Recomendaciones previas

Para la presentación y defensa del TFM se requerirá que el estudiante haya superado el resto de asignaturas del plan de estudios.

4.- Objetivos de la asignatura

A través de esta asignatura el estudiante aprenderá a desarrollar, presentar y defender de una manera adecuada ante una audiencia científica un trabajo relacionado con los contenidos del Máster Universitario en Física y Matemáticas

5.- Contenidos

De acuerdo con el Reglamento de Trabajos Fin de Grado y Máster de la Universidad de Salamanca (Aprobado por el Consejo de Gobierno de la Universidad en su sesión de 27 de julio de 2010), el contenido de cada TFG o TFM podrá corresponder a uno de los siguientes tipos:

- 1) Trabajos experimentales o teóricos relacionados con la titulación y ofertados por los docentes que participan en el Máster Universitario, que podrán desarrollarse en los laboratorios de los departamentos implicados en la docencia del Máster.
- 2) Trabajos de revisión e investigación bibliográfica centrados en diferentes campos relacionados con la titulación.

Los TFG/TFM podrán adaptarse a dos modalidades:

- 1) Generales, si son propuestos para que a la vez puedan ser realizados autónomamente por un número no determinado de estudiantes.
- 2) Específicos, cuando se ofertan para que los realice un único estudiante.

6	6 Competencias a adquirir

Básicas /Generales

- CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7. Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- CB8. Los estudiantes serán capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB9. Los estudiantes sabrán comunicar sus conclusiones -y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB10. Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- CG1. Los estudiantes se familiarizarán con los diversos aspectos involucrados en la investigación, tales como: trabajo teórico; consulta de bibliografía, revistas y bases de datos especializadas; redacción de trabajos de investigación; comunicación, exposición, debate y publicación de resultados.

_	,	٠.		
Ge	n	rı	22	•

Específicas

- CE1. Conocer las bases teóricas de la Física y las Matemáticas.
- CE2. Capacidad para utilizar teorías físicas y métodos matemáticos para modelar y estudiar problemas provenientes de diferentes campos científicos.
- CE3. Capacidad para iniciarse en tareas de investigación interdiciplinar en Física y Matemáticas.
- CE4. Poseer conocimientos físicos y matemáticos avanzados que permitan cursar un Programa de Doctorado y realizar una tesis doctoral, desarrollando para ello la comprensión de los conceptos.
- CE5. Capacidad para incorporarse a grupos de investigación e I+D+i en Física y Matemáticas a través de la interacción con los grupos de la Universidad de Salamanca especializados en dichos campos.
- CE6. Capacidad para contribuir a las aplicaciones de la Física y las Matemáticas en empresas de innovación tecnológica.
- CE7. Profundizar en un tema de investigación y conocer los avances más recientes en alguna de las actuales líneas de investigación en el ámbito de la Física y las Matemáticas.

7.- Metodologías

Trabajo tutelado por un profesor del Máster

8.- Previsión de distribución de las metodologías docentes

		Horas dirigidas por el profesor		Horas de trabajo	HORAS
		Horas presenciales.	Horas no presenciales.	autónomo	TOTALES
Sesiones magistrales					
	En aula				
Prácticas	En el laboratorio				
	En aula de informática				
	De campo				
	De visualización (visu)				
Seminarios					
Exposiciones y debates					
Tutorías		30		309	339
Actividades de seguimiento online					
Preparación de trabajos					
Otras actividades (detallar)					
Exámenes		1		35	36
TOTAL		31		344	375

9. - Recursos

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

El tutor asignado a cada estudiante será el encargado de informarle de la bibliografía necesaria para la realización del trabajo fin de Máster.

Consideraciones Generales

Para supercar esa asignatura el estudiante deberá presenter, exponer oralmente y defender una memoria sobre el trabajo realizado.

Criterios de evaluación

Se evaluará la presentación, la exposición oral y la defense de la memoria sobre el trabajo realizado.

Instrumentos de evaluación

Presentación de la memoria: supondrá entre 40 y 70% de la nota de la asignatura Exposición oral de la memoria: supondrá entre 15 y 40% de la nota de la asignatura Defensa de la memoria: supondrá entre 20 y 50% de la nota de la asignatura

Recomendaciones para la evaluación.

Recomendaciones para la recuperación.